

1

GENERALISED ARCHITECTURE FOR DYNAMIC INFRASTRUCTURE SERVICES

Large Scale Integrated Project
Co-funded by the European Commission within the Seventh Framework Programme
Grant Agreement no. 248657
Strategic objective: The Network of the Future (ICT-2009.1.1)

Start date of project: January 1st, 2010 (36 months duration)

Security Architecture for On-Demand Infrastructure Services
Provisioning

Version 0.2

Due date: Not applicable

Submission date: Not applicable

Deliverable leader: University of Amsterdam

Author list: Yuri Demchenko

Canh Ngo

Dissemination Level

 PU: Public

 PP: Restricted to other programme participants (including the Commission Services)

 RE: Restricted to a group specified by the consortium (including the Commission Services)

 CO: Confidential, only for members of the consortium (including the Commission Services)

Abstract

This document provides the general description of the security architecture for GEYSERS on-demand
infrastructure services provisioning, its major components and implementation suggestions.

4

¢ŀōƭŜ ƻŦ /ƻƴǘŜƴǘǎ

0 Objectives and scope of document 6

1 Introduction 7

2 GEYSERS Architecture Overview 8

2.1 GEYSERS Architecture 8

Figure 2.2-1: GEYSERS Architecture 9

2.2 Logical Infrastructure Composition Layer (LICL) 9

2.3 General use-cases in On-demand Infrastructure Services Provisioning 11

2.4 ISOD Abstract Provisioning model 12

2.5 GEYSERS Service Delivery Framework (SDF) 15

3 General Security requirements for On-demand Infrastructure Services Provisioning 16

3.1 General Requirements to Security Services and Authorization Authentication

Infrastructure 16

4 Existing Security Frameworks and Platforms 18

4.1 Role Based Access Control 18

4.2 Generic AAA Authorization Framework 18

4.3 Dynamic Access Control Services in existing Cloud IaaS platforms 20

4.3.1 Amazon AWS Security 21

4.3.2 Access Control Service for Windows Azure Cloud platform 21

5 Security Architecture 23

5.1 Multi-Layer Security Services 23

5.2 Authentication and Authorization Infrastructure 23

5.3 Security Services Lifecycle Management Model 26

5.4 Security context management in VI resources provisioning 28

5.4.1 Session types and security context 28

5.4.2 Using Authorization tokens for security context management 29

6 AAI Components 30

6.1 Identity Management Service 30

6.2 Authorization Service 31

6.3 Token Validation Service 32

6.4 The Security Gateway library 32

6.5 AAI Interfaces 32

7 Common Security Services Interface (CSSI) 33

7.1 General CSSI functional structure 33

7.2 Authentication and Delegation Interface 36

7.3 Authorization Interface 37

7.4 Authentication and Authorization for NIPS client-server 38

7.5 AAI Request and Response Formats 41

8 GEYSERS Access Control Use Cases 41

8.1.1 Access Control Use Cases at NCP+ (VIO-N) 41

8.1.2 Access Control Use Cases at Upper-LICL (VIP) 42

8.1.3 Access Control Use Cases at Lower-LICL (PIP) 45

8.2 XACML Attribute Profile for GEYSERS 47

8.2.1 Resource profile 47

8.2.2 Subject profile 47

8.2.3 Action profile 48

9 AAI Implementation with GAAA Toolkit 48

9.1 Authentication bundle 48

9.1.1 Service configuration 48

9.1.2 Certificate and public-private keypair generation 49

9.1.3 User Management 49

9.2 Authorization bundle 49

9.2.1 Service configuration 49

9.2.2 Policy management 50

10 Conclusion 52

11 References 52

Appendix A Using SAML and XACML to support generic Authorization scenario 56

Appendix B Web Services Security Framework (WS-Security) 73

Appendix C Conformance to WS-Interoperability Basic Profile and Basic Security Profile 74

Appendix D GSS-API Summary 76

0 hōƧŜŎǘƛǾŜǎ ŀƴŘ ǎŎƻǇŜ ƻŦ ŘƻŎǳƳŜƴǘ

This document provides the general description of the security architecture for GEYSERS on-demand
infrastructure services provisioning, its major components and implementation suggestions.

The major objectives of the document is to provide necessary information to developers of other components
of the GEYSERS architecture how to integrate and use security services to achieve secure operation of the whole
GEYSERS infrastructure.

7

1 LƴǘǊƻŘǳŎǘƛƻƴ

The main objective of the GEYSERS project is to address some of the key technical challenges to enable on-demand

Network and IT resources and infrastructure services provisioning. The Authentication, Authorization Infrastructure (AAI)

is as an important component of the supporting infrastructure for on-demand Infrastructure Services Provisioning (ISOD).

Consistent AAI operation requires interaction of the related AAI components at all ISOD layers and during all provisioning

stages.

This document describes the result of the development of the AAI architecture for ISOD. The proposed architecture

attempts to address key access control problems when integrating heterogeneous virtualisation platforms and Control and

Management planes. The proposed architecture also targets to ensure future compatibility with the emerging Cloud

platforms and physical resources access control solutions and infrastructures.

The report is organised as follows. Section 2 provides short description of the GEYSERS architecture including GEYSERS

Service Delivery Framework (SDF) followed by the description of the basic use cases and abstraction model used for

security services and AAI definition and development. Section 3 defines the general requirements to ISOD security

infrastructure and services.

Section 4 provides an overview of the generic access control models such as Role Based Access Control (RBAC), Generic

AAA Authorization Framework (GAAA-AuthZ) and its extension for dynamically provisioned services Dynamic Access

Control Infrastructure (DACI). The section describes also solutions used in existing Cloud IaaS platform such as Amazon

Web Services (AWS) and Microsoft Azure.

Section 5 describes the proposed AAI architecture for on-demand Infrastructure Services Provisioning (ISOD) that address

both tasks ς secure operation or the provisioning infrastructure and provisioning of the Dynamic Access Control

Infrastructure (DACI) as a part of the on-demand provisioned infrastructure. The proposed architecture framework

includes also such components as Security Services Lifecycle Management (SSLM) model and security context management

framework. It identifies key functionalities to support multidomain network+IT infrastructure services and introduces a

number of mechanisms and solutions to support them, in particular: AuthZ ticket format for extended AuthZ session

management, Token Validation Service (TVS) to enable token based policy enforcement, policy Obligation Handling

Reference Model (OHRM), and XACML policy profile for ISOD. The proposed architecture will allow smooth integration

with other authorization frameworks as currently used and developed by Cloud and networking community.

Section 6 describes how the proposed GAAA-ISOD architecture is implemented in the current version of the GAAA Toolkit.

It provides general description of the GAAA Toolkit structure and functionalities to support network resource provisioning

and more detailed description of such components as TVS and GAAAPI that can be used as a pluggable component to add

AAA/AuthZ services to different NRPS frameworks.

Section 7 provides detailed description of the Common Security Services Interface (CSSI) that is used as a common

generalised interface for accessing AAI/GAAA-ISOD services and for their simple integration with other components of the

GEYSERS architecture.

Finally, section 7 provides summary of the current results and suggests further developments.

2 D9¸{9w{ !ǊŎƘƛǘŜŎǘǳǊŜ hǾŜǊǾƛŜǿ

2.1 D9¸{9w{ !ǊŎƘƛǘŜŎǘǳǊŜ

The GEYSERS architecture re-qualifies the interworking of legacy planes by means of a virtual infrastructure representation

layer for network and IT resources and its advanced resource provisioning mechanisms. The GEYSERS architecture presents

an innovative structure by adopting the concepts of Infrastructure as a Service (IaaS) and service-oriented networking to

enable infrastructure operators to offer new network and IT converged services. On one hand, the service-oriented and

IaaS paradigm enable flexibility of infrastructure provisioning in terms of configuration, accessibility and availability for the

user. On the other hand, the layer-based structure of the architecture enables separation of functional aspects of each of

the entities involved in the converged service provisioning, from the service consumer to the physical infrastructure. Figure

2.1 shows the layering structure of the GEYSERS architecture reference model comprised of four layers: the Service

Middleware Layer (SML), the enhanced Network Control Plane (NCP), the novel Logical Infrastructure Composition Layer

(LICL) and the physical infrastructure.

The Logical Infrastructure Composition Layer (LICL) [3] is a middleware aiming at decoupling infrastructure resource

management from the actual service provisioning. This is performed by adopting an Infrastructure as a Service (IaaS)

management model for both optical network and IT resources. Although IaaS is a well-known model in IT environment, it

is not so common for networking, in favour of Network as a Service (NaaS)..

In addition to IaaS, LICL is based in infrastructure resource virtualisation paradigms for granting flexible infrastructure

service provisioning. A number of projects have successfully dealt with virtualisation for leveraging infrastructure resources

utilisation. At the same time, virtualisation allows reducing capitalisation costs, which is especially critical for scientific

communities where the equipment acquisition and network deployment costs considerably diminish project budgets.

The LICL is located between the physical infrastructure resources and the upper layers in GEYSERS architecture, such as

the Network Control Plane and the Service Middleware Layer. In GEYSERS architecture, the LICL is responsible for the

creation and maintenance of virtual resources as well as virtual infrastructures. In the context of GEYSERS, infrastructure

virtualisation is the creation of a virtual representation of a physical resource (e.g., optical network node or computing

device), based on an abstract model that is often achieved by partitioning or aggregation. A virtual infrastructure is a set

of virtual resources interconnected together that share a common administration framework. Within a virtual

infrastructure, virtual connectivity (virtual link) is defined as a connection between one port of a virtual network element

to a port of another virtual network element.

Figure 2.2-1: GEYSERS Architecture

2.2 [ƻƎƛŎŀƭ LƴŦǊŀǎǘǊǳŎǘǳǊŜ /ƻƳǇƻǎƛǘƛƻƴ [ŀȅŜǊ ό[L/[ύ
LICL is the key element in the GEYSERS architecture in order to provision infrastructure services. This section
provides a short description of the functional architecture of the LICL that provides a practical implementation
of the abstract IaaS provisioning model described in section VIII (refer to this section for PIP, VIP and VIO
defintion).

The LICL is divided into two main sub-systems depending on the functionalities implemented in each sub-system
and also depending on the role that uses such functionalities. On the one hand, there is the upper-LICL, which
is responsible mainly for the virtual infrastructure management and satisfies the needs and requirements of
the virtual infrastructure provider. On the other hand we have, the lower-LICL, which is responsible for physical
resource virtualisation and management and which satisfies the requirements of the physical infrastructure
provider.

The upper-LICL is composed of different modules. The functionalities covered at this level are the virtual
infrastructure creation, management and re-planning, and the SLA enforcement. The virtual infrastructure
creation is done as a composition of different virtual resources available from one or multiple PIPs. Such a virtual
infrastructure is provisioned towards the virtual infrastructure operator as a unit. Furthermore, the upper-LICL
offers dynamic re-planning functionalities as a response to the changing requirements of the VIO. Such dynamic
re-planning may involve the inclusion of new resources to the virtual infrastructure, the release of un-used
resources, or even the resizing of some of them (e.g., increase or decrease the total bandwidth capability of a
virtual link). As a part of the system oriented to provide dynamic infrastructure services, the upper-LICL provides
capabilities to ensure SLA levels are met during the whole service lifecycle.

The lower-LICL covers the functionalities regarding physical resource abstraction and resource virtualisation.
The tools offered by the lower-LICL are used by the PIP in order to manage its own infrastructure. The lower-
LICL is responsible for the physical resource abstraction that basically comprehends all the necessary steps to
create a logical resource representing the physical resource. It also is in charge of the virtual resource creation
and management, as well as the resource monitoring and configuration. The lower-LICL also offers an
information service, which is used by the PIP to send information about its domain capabilities towards the
different VIPs.

Figure 2.3 depicts the functional architecture of the LICL, split into the two aforementioned components. It also
shows the different interfaces in each component in order to communicate with the outer world. In the case of
the upper-LICL, it has the Management-to-LICL (MLI) interface, which offers all the virtual infrastructure
management operations (e.g., request, re-planning, decommission) and then the SML-to-LICL (SLI) interface
and the Call Controller Interface (CCI), used to offer operation capabilities over the virtual infrastructure. In
detail, the SLI offers operations over the virtual IT resources and the CCI over the virtual network resources.
However, it is remarkable that this is a logical differentiation, since the implementation of the system offers
one interface and handles the virtual resources in a converged manner independently of its nature. Finally, the
lower-LICL offers the VR request service, used to request for single virtual resources, the Resource Operation
Service, that represents the operation interfaces for the virtual resources, and the information service, which
is used to exchange information with the different physical infrastructure providers.

Figure 2.3?: LICL functional architecture overview

2.3 DŜƴŜǊŀƭ ǳǎŜπŎŀǎŜǎ ƛƴ hƴπŘŜƳŀƴŘ LƴŦǊŀǎǘǊǳŎǘǳǊŜ {ŜǊǾƛŎŜǎ

tǊƻǾƛǎƛƻƴƛƴƎ

The two basic use-cases for on-demand infrastructure service provisioning can be considered: large scientific
infrastructures and network infrastructure provisioning [4, 5, 6]. These use-cases represent the two different
perspectives in developing infrastructure services ς the user and application developer perspective on one side,
and the provider perspective on the other side. Users are interested in uniform and simple access to the
resource and the services that are exposed as Cloud or Grid resources and can be easily integrated into the
scientific or business workflows. Infrastructure providers are interested in infrastructure resource pooling and
virtualisation to simplify their on-demand provisioning and extend their service offering and business model to
Virtual Infrastructure provisioning.

Figure 2.2 illustrates the typical e-Science infrastructure that includes Grid and Cloud based computing and
storage resources, instruments, control and monitoring system, visualization system, and users represented by
user clients. The diagram also reflects that there may be different types of connecting network links: high-speed
and low-speed which both can be permanent for the project or provisioned on-demand.

The figure also illustrates a typical use-case of a high-performance infrastructure, which is used by two or more
cooperative research groups in different locations. In order to complete their task (e.g. cooperative image
processing and analysis) they require a number of resources and services to process raw data on distributed
Grid, Cloud or proprietary data centers, analyse intermediate data using specialised applications and finally
deliver the resulting data to the scientists. This use-case includes all basic components of the typical e-Science
research process: data collection, initial data mining and filtering, analysis with specialised scientific
applications, and finally presentation and visualisation to the users.

Figure 2.3: Typical usecase for cloud based heterogeneous e-Science or enterprise infrastructure

provisioning.

2.4 L{h5 !ōǎǘǊŀŎǘ tǊƻǾƛǎƛƻƴƛƴƎ ƳƻŘŜƭ

Figure 2.3 below illustrates the abstraction of the typical project or group oriented Virtual Infrastructure (VI) provisioning

process that includes both computing resources and supporting network that commonly referred as infrastructure services

[4, 5]. The VI is provisioned for two collaborative user groups in different locations that in order to fulfill their task (e.g.

cooperative image processing and analysis) require a number of resources and services to process raw data on distributed

Grid or Cloud data centers, analyse intermediate data on specialist applications and finally deliver the result data to the

users/scientists. The discussed use case contains all basic components of the typical e-Science research process: data

production with scientific instrument (labeled as VIR4 node), initial data mining and filtering (VIR3, VIR5), analysis with

special scientific applications (VIR1, VIR6), and finally presentation and visualisation (VIR1, VIR6) to the users.

The figure also shows the main actors involved into this process, such as Physical Infrastructure Provider (PIP), Virtual

Infrastructure Provider (VIP), Virtual Infrastructure Operator (VIO). The required supporting infrastructure services are

depictured on the left side of the picture and includes functional components and services used to support normal

operation of all mentioned actors.

The LICL (or Virtual Infrastructure Composition and Management (VICM)) layer includes the Logical Abstraction Layer and

the VI/VR Adaptation Layer facing correspondingly lower PIP and upper Application layer. These layers represent

information used by VIO/user applications to access VRI and support necessary logical transformation of the resources

during composition and operation stages. VICM middleware is one of the key functionalities that enables all component

services to interact, includes message processing functionality, middleware security, composition and orchestration

services.

The proposed architectural framework for On-Demand Infrastructure Services provisioning (ISOD) comprises of the

following main components [3, 4]: the Logical Infrastructure Composition Layer (also defined in [3, 4] as Composable

Services Architecture (CSA)) that intends to provide a conceptual and methodological framework for developing

dynamically configurable virtualised infrastructure services; the Infrastructure Services Modeling Framework (ISMF) that

provides a basis for the infrastructure resources virtualisation and management, including description, discovery, modeling,

composition and monitoring; the Service Delivery Framework (SDF) that provides a basis for defining the whole

composable services life cycle management and supporting infrastructure services. Two cross-layer functionalities include

Service Control and Management Plane (CMP) and Security Infrastructure described in this document.

The proposed architecture is a SOA (Service Oriented Architecture) based [7] and uses the same basic operation principle

as known and widely used SOA frameworks, what also provides a direct mapping to the possible VICM implementation

platforms such as Enterprise Services Bus (ESB) or OSGi framework [8,9].

The SDF introduced as a part of the proposed GEYSERS architectural framework (as being developed in [2, 3]) extends the

proposed by the TeleManagement Forum the Service Delivery Framework as a part of the Software Enabled Services

Management Solution [10, 11]. It includes the following main stages: (1) infrastructure creation request sent to VIO or VIP

that may include both required resources and network infrastructure to support distributed user groups and/or

applications; (2) infrastructure planning and advance reservation; (3) infrastructure deployment including services

synchronization and initiation; (4) operation stage, and (5) infrastructure decommissioning. It combines/consolidates in

one provisioning workflow all processes that are run by different supporting systems and executed by different actors.

The main infrastructure component to support SDF is the Service Lifecycle Meatadata Service (MD-SL) that provides

necessary information to store/identify composed services identifiers, stages, versions and also bind this information to

the SLA and provisioning sessions IDs.

User/
ApplicB

User/
ApplicA

VRI2

VRI4

VRI5

VRI6

VRI2

VRI1

VI Operator

Layer

PIP1 PIP2 PIP4PIP3

Virtual Infrastructure (VI) (operated by VIO1)

VIProvider2

ND-PIP1

ND-VIP1

ND-PIP2 ND-PIP3-PIP4

ND-VIP2

ND-VIO1

UserND-A UserND-B

PI Provider

Layer

(PR Layer)

VI Provider

Layer

(VR/LR Layer)

VIProvider1

VI/VR Adaptation Layer

Pi/PR Adaptation Layer

Pi/PR Layer

C
o

m
p
o

s
it
io

n

L
o

g
ic

a
l
R

s
r

AAI/Policy

Security

SLC

Metadada

Application/Service Layer

C
tr

l
&

 M
n
g
n
t

(O
rc

h
e

s
tr

a
tn

)

Logical Abstraction Layer

Security

Context

Resource

Config

VI Comp & Mngnt Layer (VICM)

VR1 VR3 VR4 VR5 VR6VR2

VIO1

SLA/

SLM

Legend
ND* - Network Domain

VIR* - VI Resource (deployed)

VR ïVirtual Resource

LR ïLogical Resource

PR ïPhysical Resource

Figure 2.3. Main actors, functional layers and processes in on-demand infrastructure services provisioning

Physical Resources (PR), including IT resources and network, are provided by Physical Infrastructure Providers (PIP). In

order to be included into VI composition and provisioning by the VIP they need to be abstracted to the Logical Resource

(LR) that will undergo a number of abstract transformations, including possibly also interactive negotiation with the PIP.

The composed VI need to be deployed to the PIP which will create virtualised physical resources (VPR) that may be a part

or a pool of the resources provided by PIP. The deployment process includes distribution of common VI context,

configuration of VPR at PIP, advance reservation and scheduling, and virtualised infrastructure services synchronization

and initiation, to make them available to Application layer consumers.

The proposed abstract model allows outsourcing the provisioned VI operation to the VI Operator (VIO) who is from the

user point of view provides valuable services of the required resources consolidation - both IT and networks, and takes a

burden of managing the provisioned services.

The described model is being developed in the GEYSERS project [10] that targets to provide a generic architecture for Cloud

Infrastructure as a Service (IaaS) provisioning model, allowing also to use and integrate other Clouds provisioning models

for individual resources virtualisation.

The proposed architecture provides a basis and motivates development of the generalised framework for provisioning

dynamic security infrastructure that includes Security Services Lifecycle Management model (SSLM), common security

services interface (CSSI), and related security mechanisms to allow the consistency of the dynamically provisioned security

services operation. The required security infrastructure should provide a common framework for operating security

ǎŜǊǾƛŎŜǎ ŀǘ ±Lt ŀƴŘ ±Lh ƭŀȅŜǊ ŀƴŘ ōŜ ƛƴǘŜƎǊŀǘŜŘ ǿƛǘƘ tLtΩǎ ƭŜƎŀŎȅ ǎŜŎǳǊƛǘȅ ǎŜǊǾƛŎŜǎΦ

It is important to mention that discussed here physical and virtual resources are in fact complex software enabled systems

with their own operational systems and security services. The VI provisioning process should support their smooth

integration into the common federated VI security infrastructure allowing to define a common access control policies.

Access decision made at the VI level should be trusted and validated at the PIP level, what can be achieved by creating

dynamic security associations during the provisioning process.

2.5 D9¸{9w{ {ŜǊǾƛŎŜ 5ŜƭƛǾŜǊȅ CǊŀƳŜǿƻǊƪ ό{5Cύ

The LICL operation relies on the well-defined services lifecycle management (SLM) model that is defined based on the

TeleManagement Forum Service Delivery Framework (SDF) [10] that includes both the service delivery stages and required

supporting infrastructure services.

Figure 2.4 illustrates the main service provisioning or delivery stages that address specific requirements of the provisioned
on-demand virtualised infrastructure services:

Service Request Stage (including SLA negotiation). The SLA can describe QoS and security requirements of the negotiated
infrastructure service along with information that facilitates authentication of service requests from users. This stage also
includes generation of the Global Reservation ID (GRI) that will serve as a provisioning session identifier and will bind all
other stages and related security context.

Composition/Reservation Stage that also includes Reservation Session Binding with the GRI, which provides support for
complex reservation processes in multi-domain multi-provider environments. This stage may require access control and
SLA/policy enforcement.

Deployment Stage, including services Registration and Synchronisation. The deployment stage begins after all component
resources have been reserved and includes distribution of the common composed service context (including security
context) and binding the reserved resources or services to the GRI as a common provisioning session ID. The Registration
and Synchronisation stage (which can be considered as optional) specifically targets scenarios with provisioned service
migration or re-planning. In a simple case the Registration stage binds the local resource or hosting platform run-time
process ID to the GRI as a provisioning session ID.

Operation Stage (including Monitoring). This is the main operational stage of the provisioned on-demand composable
services. Monitoring is an important functionality of this stage to ensure service availability and secure operation, including
SLA enforcement.

Decommissioning Stage ensures that all sessions are terminated, data is cleaned up, and session security context is
recycled. The decommissioning stage can also provide information to or initiate service usage accounting.

Two additional (sub-)stages can be initiated from the Operation stage, based on the running composed service or
component services state:

Re-composition or Re-planning Stage should allow incremental infrastructure changes.

Recovery/Migration Stage can be initiated by the user or the provider. This process can use MD-SLC to initiate a full or
partial resource re-synchronisation, it may also require re-composition.

Implementation of the proposed SDF requires a special Service Lifecycle Metadata Repository (MD SLC as shown on Figure
2.3) to support consistent services lifecycle management. MD SLC keeps the services metadata that include at least service
state, service properties, and services configuration information.

2.4?. GEYSERS Service Delivery Framework

3 DŜƴŜǊŀƭ {ŜŎǳǊƛǘȅ ǊŜǉǳƛǊŜƳŜƴǘǎ ŦƻǊ hƴπŘŜƳŀƴŘ
LƴŦǊŀǎǘǊǳŎǘǳǊŜ {ŜǊǾƛŎŜǎ tǊƻǾƛǎƛƻƴƛƴƎ

3.1 DŜƴŜǊŀƭ wŜǉǳƛǊŜƳŜƴǘǎ ǘƻ {ŜŎǳǊƛǘȅ {ŜǊǾƛŎŜǎ ŀƴŘ !ǳǘƘƻǊƛȊŀǘƛƻƴ

!ǳǘƘŜƴǘƛŎŀǘƛƻƴ LƴŦǊŀǎǘǊǳŎǘǳǊŜ

Providing consistent security services in GEYSERS architecture is of primary importance due to potentially multi-provider
and multi-tenant nature of virtual infrastructures provisioned on-demand. The GEYSERS security architecture should
address two aspects of the VI operation and dynamic security services provisioning:

¶ Provide security infrastructure for secure VI operation, including access control and SLA and policy enforcement for
all interacting roles and components in VI and VIP/VIO, secure messaging and transport services.

¶ Provisioning dynamic security services, including creation and management of the dynamic security associations, as a
part of the provisioned complex/composite services or virtual infrastructures.

The first task is a traditional task in security engineering, while dynamic provisioning of managed security services remains
a problem and requires additional research.

The Security Services Lifecycle Management (SSLM) as an important issue on building consistent security services for
dynamically provisioned virtual infrastructures is discussed below [sslm]. The SSLM extends the described above Geysers
SDF service lifecycle management model and workflow with additional sub-stages and functions to bind dynamic security
context to the general provisioning session and Cloud virtualisation and hosting platform in such a way that to ensure all
operations on the virtual infrastructure and user data to be secured during their whole lifecycle.

The Geysers-Security Infrastructure (GSI) should provide the following basic infrastructure security services to ensure
normal operation of the virtual infrastructure:

Å Access control (e.g. Authentication, Authorization, Identity Management)
Å Policy and SLA enforcement
Å Trust management (including interdomain and inter-provider and dynamic security associations)
Å Data, messaging and communication security
Å Additionally, auditing/logging and accounting.

As a part of provisioned VI, the security solutions and supporting infrastructure should address the following problems,
mostly related to data integrity and data processing security:

Å Secure data transfer that should be enforced with data activation mechanism

Å Protection of data stored on the virtualisation platform

Å Restore from the process failure that entails problems related to secure job/application session and data

restoration.

Initial suggestions to address those problems are based on the secure provisioning and application/job session
management:

Å Special session for data transfer that should also support data partitioning and run-time activation and

synchronization.

Å Secure job/session fail-over that should rely on the session synchronization mechanism when restoring the session.

Å Session synchronization mechanisms that should protect the integrity of the remote run-time environment.

The following problems/challenges arise from the GEYSERS provisioning environment analysis for security

services/infrastructure design:

¶ 5ŀǘŀ ǇǊƻǘŜŎǘƛƻƴ ōƻǘƘ ǎǘƻǊŜŘ ŀƴŘ άƻƴ-ǿƛǊŜέ ǘƘŀǘ ƛƴŎƭǳŘŜ ōŜǎƛŘŜ ƴŜŎŜǎǎŀǊȅ ŎƻƴŦƛŘŜƴǘƛŀƭƛǘȅΣ ƛƴǘŜƎǊƛǘȅΣ ŀŎŎŜǎǎ ŎƻƴǘǊƻƭ
services, also data lifecycle management and synchronization.

¶ Access control infrastructure virtualisation and dynamic provisioning, including dynamic/automated policy
composition or generation.

¶ Security services lifecycle management, in particular related services metadata and properties, binding to main
services.

¶ Security sessions and related security context management during the whole security services lifecycle, including
binding security context to the provisioning session and virtualisation platform.

¶ Dynamic security associations (DSA) and trust/key management, including trust anchor bootstrapping during
deployment stage, what should provide fully verifiable chain of trust from the user client/platform to the service/data
runtime environment.

¶ SLA management, including initial SLA negotiation and further SLA enforcement at the planning and operation stages.

Initial suggestions to address those problems require the consistent secure provisioning and application sessions

management, in particular:

¶ Special session for data transfer that should also support data partitioning and run-time activation and synchronization.
¶ Session synchronization mechanisms that should protect the integrity of the remote run-time environment.
¶ Secure session fail-over that should rely on the session synchronization mechanism when restoring the session.
¶ Standardized interfaces that will answer some of user concerns on cloud security.
Successful GEYSERS architecture adoption by industry and its integration with advanced infrastructure services will require
implementing manageable security services and mechanisms for the remote control of the provisioned infrastructure
operational environment integrity by users.

GYESERS-Security should implement multi-layer security services including transport, messaging and application/data
security, and additionally network layer security for distributed VPN based enterprise domains. Security and security
services in the GEYSERS architecture design are applied at different layers and can be called from different functional
components using standard/common security services interface. Security services are governed by related security
policies.

Security services can be designed as: pluggable services operating at the messaging layer; OSGi bundles that can be
dynamically added as composable services to other composable services to form an instant virtual infrastructure; or
exposed as Web services and be integrated with other services by means of higher level workflow management systems.

4 9ȄƛǎǘƛƴƎ {ŜŎǳǊƛǘȅ CǊŀƳŜǿƻǊƪǎ ŀƴŘ tƭŀǘŦƻǊƳǎ

4.1 wƻƭŜ .ŀǎŜŘ !ŎŎŜǎǎ /ƻƴǘǊƻƭ

Although RBAC is technically a form of non-discretionary access control, it is often considered as one of the three primary

access control policies (the others are DAC and MAC). In RBAC, access decisions are based on the roles that individual users

have as part of an organization. Users take on assigned roles (such as professor, student, operator, or manager). Access

rights are grouped by role name, and the use of resources is restricted to individuals authorized to assume the associated

role. The use of roles to control access can be an effective means for developing and enforcing enterprise-specific security

policies and for streamlining the security management process.

Under RBAC, users are granted membership into roles based on their competencies and responsibilities in the organization.

The operations that a user is permitted to perform are based on the user's role. User membership into roles can be revoked

easily and new memberships established as job assignments dictate. Role associations can be established when new

operations are instituted, and old operations can be deleted as organizational functions change and evolve. This simplifies

the administration and management of privileges; roles can be updated without updating the privileges for every user on

an individual basis.

Generic RBAC model [15, 16, 17] provides an industry recognised solution for effective user roles/privileges management

and policy based access control. It extends Discretional Access Control (DAC) and Mandatory Access Control (MAC) models

with more flexible access control policy management adoptable for typical hierarchical roles and responsibilities

management in organisations, but at the same time it suggest a full user access control management from user assignment

to granting permissions. This can be suitable for internal organisational environment and particularly for human access

rights management but reveals problems when applied to distributed service-oriented environment.

Sandhu in his two research papers [15, 16] describes 4 basic RBAC models:

¶ Core RBAC (RBAC0) that associates Users with Roles (U-R) and Roles with Permissions (R-P);

¶ Hierarchical RBAC (RBA1) that adds hierarchy to roles definition;

¶ Constrained RBAC (RBAC2) that extends RBAC0 with the constrains applied to U-R and R-P assignment;

¶ Consolidated RBAC (RBAC3) that adds role hierarchy to RBAC2.

RBAC is described in the ANSI INCITS 359-2004 standard [9] that partly re-defined the first three basic RBAC models in the

context of static or dynamic separation of duties (SSD vs DSD). Lƴ ōƻǘƘ ƳƻŘŜƭǎΣ ƛƴƛǘƛŀƭ {ŀƴŘƘǳΩǎ ŀƴŘ !b{L w.!/Σ ǘƘŜǊŜ ƛǎ ŀ

notion of the user session which is invoked by a user and provides instant session-based U-R association. Final result/stage

of the RBAC functionality are permissions assigned to the user based on static or dynamic U-R and R-P assignment. RBAC

ŘƻŜǎƴΩǘ ŎƻƴǎƛŘŜǊ όǳǎŜǊύ ǇŜǊƳƛǎǎƛƻƴǎ ŜƴŦƻǊŎŜƳŜƴǘ ƻƴ ǘƘŜ ǊŜǎƻǳǊŎŜ ƻǊ ŀŎŎŜǎǎ ƻōƧŜŎǘΦ ¢Ƙƛǎ ŦǳƴŎǘƛƻƴŀƭƛǘȅ Ŏŀƴ ōŜ ŀǘǘǊƛōǳǘŜŘ ǘƻ

other more service-oriented frameworks such as ISO/ITU X.811/X.812 Authentication/Authorization framework [18, 19]

or generic AAA Authorization framework [20, 21].

4.2 DŜƴŜǊƛŎ !!! !ǳǘƘƻǊƛȊŀǘƛƻƴ CǊŀƳŜǿƻǊƪ

Authentication, authorization, and accounting (AAA) is a term used to refer to a framework for intelligently controlling

access to computer resources, enforcing policies, auditing usage, and providing the information necessary to bill for

services. These combined functions are considered important for effective network management and security.

The generic Authentication, Authorization, Accounting (AAA) architecture was proposed in RFC2903 [20] and generic AAA

Authorization framework (GAAA-AuthZ) is described in RFC2904 [21] as a development of the ITU-T X.812 Authorization

framework [19] for distributed multidomain systems.

Authentication (AuthN) and Authorization (AuthZ) are the components of the access control function to ensure that access

to a resource or service is granted to the access subject (human, service or process) that has right to use the resource and

perform those operation on the resource that it is allowed.

Authentication is the process of identifying a user or an access subject, based on identity credentials which examples are

username and password, digital certificates, one-time-tokens, etc. Authentication refers to the confirmation that a

user/subject who is requesting services is a valid user of the resources or services requested. Typically AuthN involves

comparing a user's authentication credentials with the user credentials stored in a user database (UserDB) or the

AuthN/AAA service, or checking validity of the user credentials obtained from the trusted AuthN service or trusted Identity

Provider.

Based on positive AuthN, a user must obtain authorization for doing certain tasks. Authorization is the process of granting

or denying a user access to network resources once the user has been authenticated. The amount of information and the

amount of services the user will be granted depends on the user's authorization level which is defined by the user attribute

credentials. In other words, Authorization is the process of enforcing policies: determining what types or qualities of

activities, resources, or services a user is permitted. Usually, authorization occurs within the context of authentication.

Authenticated user is provided with the attributes that are required for authorization decision.

Accounting is the process of keeping track of a user's activity while accessing the resources or services. Accounting is carried

out by logging of session statistics and usage information and used for trend analysis, capacity planning, billing, auditing

and cost allocation.

In modern Service Oriented Architecture (SOA) applications a Resource or a Service are protected by the site access control

system that relies on both AuthN of the user and/or request message and AuthZ that applies access control policies against

the service request. It is essential in a service-oriented model that AuthN credentials are presented as a security context

in the AuthZ request and that they can be evaluated by calling back to the AuthN service and/or Attribute Authority

(AttrAuth). This also allows for loose coupling of services in distributed hierarchical access control infrastructure.

The GAAA-AuthZ model is illustrated on Figure 4.1 and includes such major functional components as: Policy Enforcement

Point (PEP), Policy Decision Point (PDP), Policy Authority Point (PAP). It is naturally integrated with the RBAC separated

User-Role and Role-Privilege management model that can be defined and supported by separate policies.

¢ƘŜ wŜǉǳŜǎǘƻǊ ǊŜǉǳŜǎǘǎ ŀ ǎŜǊǾƛŎŜ ōȅ ǎŜƴŘƛƴƎ ŀ ǎŜǊǾƛŎŜ ǊŜǉǳŜǎǘ {ŜǊǾwŜǉ ǘƻ ǘƘŜ wŜǎƻǳǊŎŜΩǎ t9t ǇǊƻǾƛŘƛƴƎ ŀǎ ƳǳŎƘ όƻǊ ŀǎ

little) information about the Subject/Requestor, Resource, Action as it decides necessary according to the implemented

authorization model and (should be known) service access control policies.

In a simple scenario, the PEP sends the decision request to the (designated) PDP and after receiving a positive PDP decision

relays a service request to the Resource. The PDP identifies the applicable policy or policy set and retrieves them from the

Policy Authority, collects the required context information and evaluates the request against the policy.

In order to optimise performance of the distributed access control infrastructure, the Authorization service may also issue

AuthZ assertion in the form of AuthzTicket that confirm access rights. They are based on a positive decision from the

Authorization system and can be used to grant access to subsequent similar requests that match an AuthzTicket. To be

consistent, AuthzTicket must preserve the full context of the authorization decision, including the AuthN context/assertion

and policy reference.

AuthN User

(User Client)

Resource

(Operation/

Action)

PermOper

AuthZ Session

(AuthZ Assert)

Attribute

Authority

PDP

PEP UserCreds

Policy

Authority
IdP

(Used DB)

Figure 4.1. Generic Authentication and Authorization services interaction.

Generic AAA Authorization Framework defines three basic operational models that describe interaction (in sense of

request/response sequences) between a user, a service or resource provider and AAA Authorization service acting as an

Authority:

The push authorization sequence. Within the push (or token-) sequence, the User first requests an authorization from a

trusted Authorization ǎŜǊǾƛŎŜ ǘƘŀǘ Ƴŀȅ ƻǊ Ƴŀȅ ƴƻǘ ƘƻƴƻǊ ǘƘŜ ¦ǎŜǊΩǎ ǊŜǉǳŜǎǘΦ Lǘ ǘƘŜƴ Ƴŀȅ ƛǎǎǳŜ ŀƴŘ ǊŜǘǳǊƴ ǎƻƳŜ ƪƛƴŘ ƻŦ

Authorization assertion (a secured ticket or token) that acts as a proof of right or as asserted list of requestor capabilities.

Typically such an assertion has an associated validity time window. The assertion may subsequently be used by the User

to request a specific service by contacting the Resource. The Resource will accept or reject the authorization assertion and

will report this back to the requesting Subject. The Resource must have been provisioned with the appropriate key material

to recognize the appropriate assertions.

The pull authorization sequence. Within the pull (or outsource-) sequence, the User will contact the Resource with a

request. Before admitting the service request, the Resource must contact its Authorization service. The Authorization

service will evaluate the request against a specific authorization policy and will return an authorization decision. The

Resource will subsequently grant or deny the service to the User by returning a result message. The Resource, which

enforces a policy, effectively out-sources a policy decision.

The agent authorization sequence. Using the agent (or provision-) sequence, the User will contact an Agent, which will

ƘŀƴŘƭŜ ǘƘŜ ¦ǎŜǊΩǎ ǊŜǉǳŜǎǘ ŦƻǊ ǘƘŜ ǇŀǊǘƛŎǳƭŀǊ wŜǎƻǳǊŎŜΦ ¢ƘŜ !ƎŜƴǘ ƛǎ ǘǊǳǎǘŜŘ ōƻǘƘ ōȅ ǘƘŜ ¦ǎŜǊ ŀƴŘ ǘhe Resource. The Agent

will make an authorization decision and, using its own or User-delegated credentials, it will contact the Resource to

provision the requested service. The Agent will provide the User with details on how to contact and use the Service.

The three basic authorization sequences described above are elementary abstractions of more complex real world

examples that normally combine the basic sequences. It may use various protocols and message formats to handle and

secure user credentials and requests.

Although more functions can be found in both an Authority and a Resource, an Authority typically acts as a Policy Decision

Point (PDP) and a resource incorporates a Policy Enforcement Point (PEP) which used to call for the policy decision to the

Authority and enforce already made decision. In the subsequent discussion we may use the term PDP and PEP to represent

functions inside the corresponding entities.

4.3 5ȅƴŀƳƛŎ !ŎŎŜǎǎ /ƻƴǘǊƻƭ {ŜǊǾƛŎŜǎ ƛƴ ŜȄƛǎǘƛƴƎ /ƭƻǳŘ Lŀŀ{ ǇƭŀǘŦƻǊƳǎ

Clouds technologies [6] are emerging as infrastructure services for provisioning computing and storage resources on-

demand in a simple and uniform way. However there is no well-defined architectural model for the Cloud Infrastructure a

Service (IaaS) provisioning model despite its wide use among big Cloud providers such as Amazon, RackSpace, Google, and

others. Recent research based on the first wave of Cloud Computing implementation have revealed a number of security

issues both in actual services organisation and operational and business models [27, 28]. Current Clouds security model is

based on the assumption that the user/customer should trust the provider. This is governed by the general Service Level

Agreement (SLA) that defines mutual provider and user expectations and obligations for the whole provisioned services

ōǳǘ ŘƻŜǎƴΩǘ ŀƭƭƻǿ ŘȅƴŀƳƛŎ vǳŀƭƛǘȅ ƻŦ {ŜǊǾƛŎŜǎ όvƻ{ύ ƳŀƴŀƎŜƳŜƴǘ ƛƴ ǇƻǘŜƴǘƛŀƭƭȅ ŎƘŀƴƎƛƴƎ ǊŜǎƻǳǊŎŜǎ ŀǾŀƛƭŀōƛƭƛǘȅ ŘǳŜ ǘƻ

changing resources demand and utilisation in typically multi-user Cloud environment.

Although Cloud provider invested a lot into making their own infrastructure secure and complying existing security

management standards (e.g. Amazon Cloud recently achieved PCI compliance certification [29]), still the overall security

of the Cloud based applications and services will depend on two other factors: security services implementation in user

applications and binding between virtualised services and Cloud based virtualisation platform, that should also ensure

protection against malicious users and risks related to possible Denial of Service (DoS) attacks.

tǊŀŎǘƛŎŀƭ /ƭƻǳŘ ǳǎŀƎŜ ǿƛǘƘƛƴ ƻƴŜ ǇǊƻǾƛŘŜǊ ƛƴŦǊŀǎǘǊǳŎǘǳǊŜ ōǊƛƴƎǎ ƛƭƭǳǎƛƻƴ ŀōƻǳǘ ǳƴƭƛƳƛǘŜŘ ŀǾŀƛƭŀōƛƭƛǘȅΣ άŜƭŀǎǘƛŎƛǘȅέ ŀƴŘ άǇŜǊŦŜŎǘέ

security, but in practice this is related only to limited range of services and with limited manageability. Currently

implemented and provided security are based on VPN and provide only simple access control services based on users

access over SSH channel. More advanced security services and fine grained access control cannot be achieved without

deeper integration with the Cloud virtualisation platform and incumbent security services, what in its own turn can be

achieved with open and well defined Cloud IaaS platform architecture.

More complex and community oriented use of Cloud infrastructure services will require developing new service

provisioning and security models that could allow creating complex project and group oriented infrastructures provisioned

on-demand and across multiple providers.

4.3.1 Amazon AWS Security

Regarding access control services for on-demand infrastructure, there are several existing works such as Amazon AWS

Identity and Access Management (IAM) for Amazon Cloud products [30], the Access Control Service in the Windows Azure

AppFabric [31].

The Amazon AWS IAM is the integration of an Identity Management System and an Access Control System. On reserving

an Amazon AWS product, each customer is assigned an AWS account. Operations on AWS products are binded to this

ŀŎŎƻǳƴǘΦ !ƳŀȊƻƴ L!a ǇǊƻǾƛŘŜǎ ŀ ƳŜŎƘŀƴƛǎƳ ǘƻ ŎǊŜŀǘŜ ŀƴŘ ƳŀƴŀƎŜ ƳǳƭǘƛǇƭŜ ǳǎŜǊǎ ōƛƴŘƛƴƎ ǘƻ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ !²{ ŀŎŎƻǳƴǘΦ

¦ǎƛƴƎ ǊǳƭŜǎ ŀƴŘ ǇƻƭƛŎƛŜǎ ŀǘ L!a ǎƛŘŜ ŀƴŘ ŀǘ !²{ ǇǊƻŘǳŎǘ ǎƛŘŜΣ ǘƘŜ L!a ŎƻǳƭŘ ŎƻƴǘǊƻƭ ǳǎŜǊǎΩ activities on AWS resources. To

guarantee security requirements on confidentiality and integrity, users have their own security credentials for accessing

AWS resources.

!ƭǘƘƻǳƎƘ !ƳŀȊƻƴ !²{ L!a ƛǎ ǎǳƛǘŀōƭŜ ŦƻǊ !ƳŀȊƻƴ !²{ ǇǊƻŘǳŎǘǎ ƛƴ ƛŘŜƴǘƛǘȅ ŀƴŘ ŀŎŎŜǎǎ ƳŀƴŀƎŜƳŜƴǘΣ ƛǘΩǎ ǎǘƛƭƭ ǊƛƎƛŘ ƛƴ ǘǊǳǎǘ

establishment and not flexible for multi-security domains and multi-tenancies while there is only one provider role for

Amazon AWS products. Amazon plays as a PIP to provide individual virtualized resources such as EC2 or S3 and also a VIP

to integrate such virtualized resources together. The access control model in Amazon AWS IAM is not well supported for

complex organizations because it only manages users in groups and performs authorization based on assigned permissions

to groups. Many other features of Role-based Access Control model [17] are not present in Amazon AWS IAM.

4.3.2 Access Control Service for Windows Azure Cloud platform

Access Control Service for Windows Azure AppFabric [Azure] is one of middleware services for applications in Microsoft

Azure Platform as in Figure 4.3:

AppFabric Services

Service Bus Access Control Caching Integration Composite App

WF WCF

Figure 4.3 ς Microsoft Azure AppFabric Services

This service enables authorization decisions are separated from regular applications and their clients to delegate to an

external access control engine. It has many notice features such as federation identity in access control, supports multiple

credentials, flexible and light-weight developer friendly programming model. AppFrabric Access Control plays the role in

Windows Azure Platform as the intermediate trust-party between user side and service side as below:

Figure 4.3 ς AppFabric Access Control for Microsoft Azure Platform (the figure from Microsoft Azure)

IƻǿŜǾŜǊΣ !ǇǇCŀōǊƛŎ !ŎŎŜǎǎ /ƻƴǘǊƻƭ ό!/ύ Ƙŀǎ ǎƻƳŜ ƭƛƳƛǘŀǘƛƻƴǎΦ !ƭǘƘƻǳƎƘ ƛǘΩǎ ŦƭŜȄƛōƭŜ ǘƻ ƻǇŜǊŀǘŜ ŀƴŘ provide access control

service in federated identity environment, AC is not support for complex on-demand provisioning services, in which the

composite service could be assembled parts from legacy services. And because of not supporting Service Lifecycle

Management, AC couldnot dynamically establish trust relationships between user-side and a provisioned resource at

service side. Hence, this solution also does not adapt access control requirements in GEYSERS.

5 {ŜŎǳǊƛǘȅ !ǊŎƘƛǘŜŎǘǳǊŜ

5.1 aǳƭǘƛπ[ŀȅŜǊ {ŜŎǳǊƛǘȅ {ŜǊǾƛŎŜǎ

There are four main aspects what concern to security that the LICL must handle. First, there must be an access control over

the resources, both virtual and physical ones, and also at VI level; access control will be obtained via authentication and

authorization mechanisms. Secondly, the data has to be protected, implying that data traffic remains isolated between VI,

as well as, stored data is not accessible from others VIs, independently they are allocated over the same physical resource.

Third, security has to facilitate policy enforcement, assuring that VI usage does not affect on the performance of other VIs.

These two last aspects relate to the isolation capability between VRs. Finally, LICL has to provide security on the service

provisioning process as well.

Security is considered a cross-layer functionality as it affects components from different layers, like virtual infrastructures,

or physical resources.

5.2 !ǳǘƘŜƴǘƛŎŀǘƛƻƴ ŀƴŘ !ǳǘƘƻǊƛȊŀǘƛƻƴ LƴŦǊŀǎǘǊǳŎǘǳǊŜ

Developing a consistent framework for dynamically provisioned security services requires deep analysis of all underlying

processes and interactions. Many processes typically used in traditional security services infrastructures need to be

abstracted, decomposed and formalized. First of all, it is related to the security services setup, configuration and security

context management that in many present solutions/frameworks is provided manually, during the service installation or

configured out-of-band.

The general security framework for on-demand provisioned infrastructure services should address two general aspects

[32]: (1) supporting an access control architecture for multi-providers to provide on-demand provisioning services, and (2)

provisioning a Dynamic Access Control Infrastructure (DACI) as part of the provisioning on-demand virtual infrastructure.

The first task primarily focuses on the access control solution supporting on-demand provisioning resources with security

contexts synchronizationand management over multi-domains. The DACI must be bootstrapped to the provisioned on-

demand VI and VIP/VIO trust domains as entities participating in the handling initial request for VI and legally and securely

bound to the VI users. Such security bootstrapping can be done at the deployment stage.

Virtual access control infrastructure setup and operation is based on the mentioned DSA that links the VI dynamic trust

anchor(s) with the main actors and/or entities participating in the VI provisioning ς VIP and the requestor or target user

organisation (if they are different). As discussed above, the creation of such DSA for the given VI can be done during the

reservation and deployment stages. Reservation stage allows to distribute the initial provisioning session context and

collects the security context (e.g. public key certificates) from all participating infrastructure components. The deployment

stage can securely distribute either shared cryptographic keys or another type of security credentials that will allow

validating information exchange and apply access control to VI users, actors, services.

Figure 5.1 illustrates in details interactions between main actors and access control services during the reservation stage

and also includes other stages of provisioned infrastructure lifecycles. The request to create VI (RequestVI) initiates a

request to VIP that will be authorized by VIP-AAI against its regular access control policies, what next will be followed by

VIP requests to PIPs ŦƻǊ ǊŜǉǳƛǊŜŘ ƻǊ ǎŜƭŜŎǘŜŘ ǇƘȅǎƛŎŀƭ ǊŜǎƻǳǊŎŜǎ twΩǎΣ ǿƘƛŎƘ ƛƴ ƛǘǎ ƻǿƴ ǘǳǊƴ ǿƛƭƭ ōŜ authorized by PIP-AAIs.

The SDF and SSLM requirements show that the initial RequestVI all as well as communication and access control

evaluations should be bound to the provisioning session identifier GRI. The chain of requests from the User to VIO, VIP and

PIP Ŏŀƴ ŀƭǎƻ ŎŀǊǊȅ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ǘǊǳǎǘ ŀƴŎƘƻǊǎ ¢!лΧ¢!нΣ ŜΦƎΦ ƛƴ ŀ ŦƻǊƳ ƻŦ ǇǳōƭƛŎ ƪŜȅ ŎŜǊǘƛŦƛŎŀǘŜ όtY/ύ ώ33] or WS-Trust

security tokens [34].

DACI is initialized at the deployment stage to controls accesses and activities on the VI resources. The DACI bootstrapping

can be done either by fully pre-configuring trust relations between VIP-AAI and DACI or by using special bootstrapping

registration procedure similar to those used in TCPA [35], or use the dynamic trust establishment protocols for multi-

providers scenarios [67]

To ensure unambiguous session context and all involved entities and resources identification the following types of

identifiers are used:

¶ Global Reservation ID (GRI) ς generated at the beginning of the VI provisioning, stored at VIO and returned to User as
identification of the provisioning session and the provisioned VI.

¶ VI-GRI ς generated by VIP as an internal reservation sessions ID, which can be also re-folded GRI, depending on VIP
provisioning model.

¶ PR-LRI and VR-LRI ς provide identification of the committed or created PR@PIP and VR@VIP.

VIO VIP VIP DACI/AAI

VI reservation request

(including VIO TA1)

AuthZ request (VI-GRI)

PIP(s)

Mapping from the returned

PR-LRI to VR-LRI for VIP

Reserve

complex

resource at

PIP(s) in

daisy-chain

mode or

concurrent

mode

VR reservation request (including VIP TA2)

Reservation confirmation with

PR-LRI of committed PR

VI reservation response with a

VI-GRI and set of VR-LRI(s)

Generate a VI-GRI

PIP AAI

AuthZ request (PR-LRI)

User/Applicant

VI/VR Request (TA0)

SLA Negotiation
SLA Negotiation

Planning,

Reservation

Generate

GRI
Return GRI

VI deployment/activation

request
DACS instantiate

(VI-GRI)

Deploy VRs at the PIP (PR-LRIs)
Deploy VRs at

PIP(s) in daisy-

chain mode or

concurrent mode VR deployment response

VI deployment notification
VI deployment notification

Deployment,

Activation stage

VI/VR Configuration,

DACI configuration

and Security context

distribution

VR DACS

PR

Access VR(PR-LRI)
Access PR

Access VR(VR-LRI)

Authz request (VR-LRI)

Authz response

Operation

Decomission VI (VI-GRI)

Decommision VRs at the PIP (PR-LRIs)
For each PIP

providing VRs of

the VI

AuthZ request (VI-GRI)

Decomission DACS (VI-GRI)

Decomission VI notification

Decomission VI notification

Decommissioning

VI/VR teardown,

resources release,

security context

recycling

VI/VR Management,

Monitoring, DACI

operation and

security context

management

Decomission VR notification

Figure 5.1: Dynamic Access Control Infrastructure during VI Provisioning and Operation

5.3 {ŜŎǳǊƛǘȅ {ŜǊǾƛŎŜǎ [ƛŦŜŎȅŎƭŜ aŀƴŀƎŜƳŜƴǘ aƻŘŜƭ

Most of the existing security lifecycle management frameworks, such as defined in the NIST Special Publication 800-14

άDŜƴŜǊŀƭƭȅ !ŎŎŜǇǘŜŘ tǊƛƴŎƛǇƭŜǎ ŀƴŘ tǊŀŎǘƛŎŜǎ ƛƴ {ȅǎǘŜƳǎ {ŜŎǳǊƛǘȅέ ώ36], provide a good basis for security services

development and management, but they still reflect the traditional approach to services and systems design driven by

engineers force. The defined security services lifecycle includes the following typical phases: Initiation,

Development/Acquisition, Implementation, Operation/Maintenance, and Disposal.

Figure 5.2 (b) illustrates the proposed Security Services Lifecycle Management (SSLM) model [37] that reflects security

services operation in generically distributed multidomain environment and their binding to the provisioned services and/or

infrastructure. The SSLM includes the following stages:

Å Service Request and generation of the GRI that will serve as a provisioning session identifier (SessionID)

and will bind all other stages and related security context. The Request stage may also include SLA

negotiation which will become a part of the binding agreement to start on-demand service provisioning.

Å Reservation stage and Reservation session binding that provides support for complex reservation

process including required access control and policy enforcement.

Å Deployment stage begins after all component resources have been reserved and includes distribution

of the security context and binding the reserved resources or services to the Global Reservation ID (GRI)

as a common provisioning session ID.

Å Registration&Synchronisation stage (that however can be considered as optional) that specifically

targets possible scenarios with the provisioned services migration or failover. In a simple case, the

Registration stage binds the local resource or hosting platform run-time process ID to the GRI as a

provisioning session ID.

Å During Operation stage the security services provide access control to the provisioned services and

maintain the service access or usage session.

Å Decommissioning stage ensures that all sessions are terminated, data are cleaned up and session

security context is recycled.

The proposed SSLM model extends the existing SLM frameworks and earlier proposed by authors the GAAA-
NRP model [26ϐ ǿƛǘƘ ǘƘŜ ƴŜǿ ǎǘŀƎŜ άwŜƎƛǎǘǊŀǘƛƻƴ ϧ {ȅƴŎƘǊƻƴƛǎŀǘƛƻƴέ ǘƘŀǘ ǎǇŜŎƛŦƛŎŀƭƭȅ ǘŀǊƎŜǘǎ ǎǳŎƘ ǎŜŎǳǊƛǘȅ
issues as the provisioned services/resources restoration (in the framework of the active provisioning session)
and provide a mechanism for remote data protection by binding them to the session context.

Figure 5.2: The proposed Security Services Lifecycle Management model.

Service
Request
(GRI)

Planning
Design
Reservation

Deployment
Operation
Monitoring

Decom-
missioning

Operation
Monitoring

Decommis
Key Recycle

Resrv
Session

Binding

SecServ
Request

Deploy
RtmBind

Bootstr

Reqistr

Synchron

a) Service Lifecycle

b) Security Service Lifecycle

Table A explains what main processes/actions take place during the different SLM/SSLM stages and what
general and security mechanisms are used:

Å SLA ς used at the stage of the service Request placing and can also include SLA negotiation process.

Å Workflow is typically used at the Operation stage as service Orchestration mechanism and can be

originated from the design/reservation stage.

Å Metadata are created and used during the whole service lifecycle and together with security services

actually ensure the integrity of the SLM/SSLM.

Å Dynamic security associations support the integrity of the provisioned resources and are bound to the

security sessions.

Å Authorization session context supports integrity of the authorization sessions during Reservation,

Deployment and Operation stages.

Å Logging can be actually used at each stage and essentially important during the last 2 stages ς Operation

and Decommissioning.

Table 5.1. Relation between SSLM/SLM stages and supporting general and security mechanisms

SLM

stages

Request Design/Reserv.

 Development

Deployment Operation Decomissioning

Process/

Activity

SLA

Negotiation

Service/ Resource

Composition

Reservation

Composition

Configuration

Orchestration/

Session

Management

Logoff Accounting

Mechanisms/Methods

SLA M M

Workflow O M

Service

Lifecycle

Metadata

M M M M

Dynamic

Security

Associatn

 O M M

AuthZ

Session

Context

 M O M

Logging O O M M

Legend:

M ï Mandatory; O - Optional

5.4 {ŜŎǳǊƛǘȅ ŎƻƴǘŜȄǘ ƳŀƴŀƎŜƳŜƴǘ ƛƴ ±L ǊŜǎƻǳǊŎŜǎ ǇǊƻǾƛǎƛƻƴƛƴƎ

5.4.1 Session types and security context

VI authorization session in LICL is based on general SDF model that includes stages such as reservation, deployment,

access/operation, and decommission [38] as in Figure 5.. It is necessary to enforce access control policies at the beginning

of each step.

Reservation Access session DecommissioningDeployment

Provisioning session

Access Control

Policies

Figure 5.3: Virtual Infrastructure life cycle session stages

To achieve consistent security services in dynamically created virtualised resources and infrastructure in general, it is

required that resources lifecycle information/data should have sufficient security context information as described below.

From reservation stage each VI instance has a unique identifier value to distinguish among VIs through its life cycles. This

identifier value is called Global Reservation Identifier for VI (VI-GRI). VI-GRI should be generated at the beginning of

provisioning session at the VI request side (SML) or VI management side (upper-LICL layer). To correctly apply security

services, upper-LICL keeps ±L ǊŜƭŀǘŜŘ ǎŜŎǳǊƛǘȅ ƛƴŦƻǊƳŀǘƛƻƴ ŀǎ ǘƘŜ ƳŜǘŀŘŀǘŀ ƛƴ ǘƘŜ άService Lifecycle Metadata RepositoryέΦ

¢Ƙƛǎ ƳŜǘŀŘŀǘŀ ƛǎ ŎŀƭƭŜŘ ά±L ǎŜŎǳǊƛǘȅ ŎƻƴǘŜȄǘέΦ

Lower-LICL layers are implemented at PIPs for VR abstraction and management. Each VR object is identified by a unique

Local Reservation Identifier (VR-LRI) which is generated at the VR reservation stage. Similar to upper-LICL, the lower-LICL

aƭǎƻ ƴŜŜŘ ǘƻ ƪŜŜǇ ±w ǊŜƭŀǘŜŘ ǎŜŎǳǊƛǘȅ ƛƴŦƻǊƳŀǘƛƻƴ ƛƴ ǘƘŜ ά{ŜǊǾƛŎŜ [ƛŦŜŎȅŎƭŜ aŜǘŀŘŀǘŀ wŜǇƻǎƛǘƻǊȅέ ŀǎ ǘƘŜ ά±w ǎŜŎǳǊƛǘȅ

ŎƻƴǘŜȄǘέΦ

The general security context must contain following information:

¶ Session identifier: this is the unique value for identification. It could be get the value or derived from VI-GRI when

the context for VI or LRI when the context for VR.

¶ Session condition: set of conditions and obligations for the resource object (e.g.: validity time, conditions implied

by the previous policy decisions).

¶ Resource information or reference: contains a set of the resource attributes required for enforcing security policy.

For the VI, it could be set of VRs and their related attributes, including resource lifecycle stage. For the VR, it could

be VR attributes using to access a concrete PR at the PIP. Resource attributes included into the security context

object must be unambiguously linked to the full resource description, e.g. via GRI or LRI.

¶ KeyInfo: contains related information on cryptographic keys used for security operations. When the context for

VI, they could be sharing keys between VIO and VI. When the context for VR, it could contain cryptographic keys

for trust relations between VIO and the VR or between the VR with others.

5.4.2 Using Authorization tokens for security context management

Although DACI operates at the Operation stage, its security context is bound to the overall provisioning process starting

from SLA negotiation that will provide a trust anchor TA0 to User/application security domain with which the DACI will

interact during the Operation stage. The RequestVI initiates the provisioning session inside of which we can also distinguish

two other types of sessions: reservation session and access session (the deployment session is used only for control and

management purposes in the services provisioning), which however can use that same access control policy and security

context management model and consequently can use the same format and type of the session credentials. In the

discussed DACI we re-use the AuthZ tokens (AuthzToken) mechanism initially proposed in the GAAA-NRP and used for

authorization session context management in multi-domain network resource provisioning [25, 26]. Tokens as session

credentials are abstract constructs that refer to the related session context stored in the provisioned resources or services.

The token should carry session identifier, in our case GRI or VI-GRI.

When requesting VI services or resources at the operation stage, the requestor need to include the reservation session

credentials together with the requested resource or service description which in its own turn should include or be bound

to the provisioned VI identifier in a form of GRI or VI-GRI. The DACI context handling service should provide resolution and

mapping between the provided identifiers and those maintained by the VIP and PIP, in our case VR-LRI or PR-LRI. If session

credentials are not sufficient, e.g. in case when delegation or conditional policy decision is required, all session context

information must be extracted from AuthzToken and the normalised policy decision request will be sent to the DACI Policy

Decision Point (PDP) which will evaluate the request against the applied access control policy.

In the discussed DACI architecture the tokens are used both for access control and signalling at different SSLM/SDF stages

as a flexible mechanism for communicating and signalling security context between administrative and security domains

(that may represent PIP or individual physical resources). Inherited from GAAA-NRP the DACI uses two types of tokens:

¶ Access tokens that are used as AuthZ/access session credentials and refer to the stored reservation context.

¶ Pilot tokens that provide flexible functionality for managing the AuthZ session during the Reservation stage and

the whole provisioning process.

Figure 5.4 illustrates the common data model of both access token and pilot token. Although the tokens share a common

data-model, they are different in the operational model and in the way they are generated and processed. When processed

by the AuthZ service components they can be distinguished by the token type attribute which is optional for access token

and mandatory for pilot token.

Figure 5.4. Common access and pilot token datamodel.

Access tokens contain three mandatory elements: the SessionId attribute that holds the GRI; the TokenId attribute that

holds a unique token ID attribute and is used for token identification and authentication; and the TokenValue element.

The optional elements include: the Condition element that may contain two time validity attributes notBefore and

notOnOrAfter; the Decision element that holds two attributes ResourceId and Result; and optional element Obligations

that may hold policy obligations returned by the PDP. Pilot token may contain another optional Domains element that

serves as a container for collecting and distributing domain related security context.

For the purpose of authenticating token origin, the pilot token value is calculated of the concaǘŜƴŀǘŜŘ ǎǘǊƛƴƎǎ ά5ƻƳŀƛƴLŘΣ

DwLΣ ¢ƻƪŜƴLŘέΦ ¢Ƙƛǎ ŀǇǇǊƻŀŎƘ ǇǊƻǾƛŘŜǎ ŀ ǎƛƳǇƭŜ ǇǊƻǘŜŎǘƛƻƴ ƳŜŎƘŀƴƛǎƳ ŀƎŀƛƴǎǘ Ǉƛƭƻǘ ǘƻƪŜƴ ŘǳǇƭƛŎŀǘƛƻƴ ƻǊ ǊŜǇƭŀȅ ŘǳǊƛƴƎ ǘƘŜ

same reservation/authorization session. The following expressions are used to calculate the TokenValue for the access

token and pilot token:

TokenValue = HMAC(concat(DomainId, GRI, TokenId), TokenKey)

6 !!L /ƻƳǇƻƴŜƴǘǎ

The GEYSERS AAI Authentication and Authorization Servers have following components:

¶ Authentication and Identity Management Service: this server provides authentication service,issues

and verifies attribute statements binding to authenticated subjects using SAML profile [39]

¶ Authorization Service: provides the authorization service compliant with SAML-XACML profile [40]

¶ Token Validation Service: performs token verifications on AuthZ tokens

PDP

(Policy Decision Point)

PAP
(Policy Administration

Point)

AuthZ interface

(XACMLAuthz-DecisionQuery/Response)

Attribute

Authority

(e.g: Shibboleth)

SAML:

Attribute-

Query

SAML:

Attribute-

Response

AuthN interface

(issue SAML assertions)

XACMLPolicy-

Response

Authorization Server

PIP

(AuthZ Context Handler)

XACML-

PolicyQuery

Identity Management Server

Verify security tokens

(AuthN token, AuthZ

token)

Obligation

Handler

SAML-XACML

Request/Responder
Authentication Authority

Attribute DB

TVS
(Token Validation

Service)

Authz

session

cache

Token Validation Server

Figure 6-1 Authentication and Authorization Infrastructure components

6.1 LŘŜƴǘƛǘȅ aŀƴŀƎŜƳŜƴǘ {ŜǊǾƛŎŜ

The Identity Management Service has two tasks:

¶ Authentication: authenticates subjects based on their submitted credentials. There are several

credential types, such as: username/password, X.509 certificates.

¶ Issue authentication tokens (authn-token): the Identity Management Server may issue an authn-token

to the authenticated subject. The authn-token could be a standard token: SAML authentication

assertions [SAML2] or Keberos tickets. The issuer identifier of these token is the Identity Management

Server.

The authn-token could also be verified at for their lifetime and content validities

The Identity Management Server could be utilized from existing Authentication Authority and Attribute

Authority such as Shibboleth [41].

6.2 !ǳǘƘƻǊƛȊŀǘƛƻƴ {ŜǊǾƛŎŜ

Authorization Service is built upon the pluggable GAAA-TK library [25] which follows the generic Authentication,

Authorization and Accounting (AAA) framework (GAAA-AuthZ) [21]. The purpose of Authorization Service is to

grant or deny actions under an authenticated subject . The authorization policies are composed using XACML

standard [39].

The authorization interface is in compliance with SAML profile of XACML [40] in which authorization requests

and responses are XACMLAuthzDecisionQuery and XACMLAuthzDecisionResponse.

The Authorization Server Ƴŀȅ ƛǎǎǳŜ ά·!/a[!ǳǘƘȊ5ŜŎƛǎƛƻƴ !ǎǎŜǊǘƛƻƴέ ŀǎ ǘƘŜ ŀǳǘƘƻǊƛȊŀǘƛƻƴ ǘƻƪŜƴ ŦƻǊ ŀ ǊŜǉǳŜǎǘ

from PEP. The content and usage recommendations of XACMLAuthzDecision Assertion are specified in [40].

PDP

(Policy Decision Point)

PAP
(Policy Administration

Point)

(XACMLAuthzDecisionQuery

/Response)

SAML: AttributeQuery

SAML: AttributeResponse

XACMLPolicy-

Response

Authorization Server

PIP

(AuthZ Context Handler)

XACML-

PolicyQuery

Obligation

Handler

SAML-XACML

Request/Responder

External

Attribute

Authority

WSDL AuthZ protocol

(SOAP)

Figure 6-2: Authorization server

Components in the Authorization Servers have the following functionalities:

¶ SAML-XACML Request/Responder: handles SAML messages carrying XAML authorization requests and

responses.

¶ Policy Information Point (PIP): collect necessary attributes that provides to PDP for authorization policy

evaluations

¶ Policy Decision Point (PDP): evaluate authorization requests against set of XACML policies provided by

PAP.

¶ Policy Administration Point (PAP): provide policies to the PDP using SAML protocol in carrying policy

requests and policy responses.

6.3 ¢ƻƪŜƴ ±ŀƭƛŘŀǘƛƻƴ {ŜǊǾƛŎŜ

The aim of Token Validation Server is to issue and validate authorization tokens to improve decision
performance of the authorization service.

6.4 ¢ƘŜ {ŜŎǳǊƛǘȅ DŀǘŜǿŀȅ ƭƛōǊŀǊȅ

The security gateway is the auxiliary library facilitating the usages of Authentication, Authorization and Token

servicesservices.

¶ CSSI/GAAAPI: The client server application utilizes Security Gateway through the CSSI interface for invoking

authentication service

¶ t9t ƛǎ ƛƴ ŎƘŀǊƎŜ ƻŦ ŎƻƳƳǳƴƛŎŀǘƛƴƎ ǿƛǘƘ ά!ǳǘƘƻǊƛȊŀǘƛƻƴ {ŜǊǾŜǊέ ǘƻ ƎŜǘ ŀǳǘƘƻǊƛȊŀǘƛƻƴ ŘŜŎƛǎƛƻƴǎ ōȅ ǳǎƛƴƎ ά{!a-

·!/a[wŜǉǳŜǎǘκwŜǎǇƻƴŘŜǊέΦ

¶ SAM-XACML Request/Responder: the component to handle XACML authorization requests from PEP to the SAML

protocol [SAM- XACML2] before sending ǘƘŜƳ ǘƻ ǘƘŜ ά!ǳǘƘƻǊƛȊŀǘƛƻƴ {ŜǊǾŜǊέΦ

Security Gateway

PEP

(Policy Enforcement Point)

CSSI/GAAAPI

SAML-XACML Request/Responder

Figure 6-3: Security Gateway library for AAI

6.5 !!L LƴǘŜǊŦŀŎŜǎ

This part describes external interfaces of AAI components used to interact with other applications.

AAI Server

Client

SecurityGateway library

Server

AuthN AuthZ
Token

Validation

CSSI CSSI

Figure 6-4: Interaction with AAI components through interfaces

Following table summarises interfaces and their messages

Table 6.1 ς AAI interfaces and messages

Interface Peer Protocol/API Direction Functionalities

AuthN SecurityGateway

ăĄ AAI Server

SAML protocol over SOAP In/out Authenticate a subject based on submitted

credential and return authn-token.

AuthZ SecurityGateway

ăĄ AAI Server

SAML-XACML protocol

over SOAP

In/out Provide decisions for authorization requests.

Token

Validation

SecurityGateway

ăĄ AAI Server

SOAP In/out Validate authentication tokens and

authorization tokens.

CSSI Client/ Server

ăĄ

SecurityGateway

Authenticate(authn-

credentials)

In/out Authenticate with a Identity Management

Server and return authn-token.

AuthorizeAction(request) In/out Authorize a request with the AuthZ/AAI server.

7 /ƻƳƳƻƴ {ŜŎǳǊƛǘȅ {ŜǊǾƛŎŜǎ LƴǘŜǊŦŀŎŜ ό/{{Lύ

7.1 DŜƴŜǊŀƭ /{{L ŦǳƴŎǘƛƻƴŀƭ ǎǘǊǳŎǘǳǊŜ

WS-Security standard, as native to SOA and ESB [7, 8], provides necessary security mechanisms and interface for virtualised

resources interconnection, but their practical use in multi-domain/inter-domain virtualised environment will complicated

with necessary trust relations and namespaces configuration at each communicated entity. To simplify this problem for

the dynamically provisioned virtualised security services, at the level security related interfaces configuration and

information management, the CSSI has been proposed. Technically CSSI combines the core functionality of the GSS-API

[42] for authentication service, GAAA-NRP authorization and session/token management [25]. The CSSI can be used

together with WS-Security but introduces a simplified CSSI request format and SOAP security header structure that used a

common SecurityContext container with the following structure:

Secur ityContext (AuthenticationData, Authorization Data, SessionData, SecurityData)

This will allow more flexibility in defining actual security data format and semantic that will exchanged between the

virtualised services and the provider services, which due to their dynamicity will have high variation of the structure and

semantics. CSSI and DACI will be configured together with provisioned VI at the deployment stage.

GEYSERS security services can be called from all other services to implement/add basic security services such as (1) data

protection, (2) access control (authentication, authorization, delegation or identity mapping), and (3) policy enforcement.

It should be noted that the security services discussed here are related to securing GEYSERS services and applications

interaction and may be positioned as application layer security services according to X.800/ISO7498 Open Systems Security

Architecture [18, 19]. GEYSERS security infrastructure may use other layer security services and mechanisms to protect

communication channels such as VPN/IPSec, HTTPS, but these services can be implemented using existing standard

libraries and are not the scope of the GEYSERS security design.

GEYSERS CSSI implements the following interface components:

¶ Standard Generic Security Services Application Programming Interface (GSS-API) [42] that supports data and/or

message encryption/decryption, signature, authentication and delegation.

¶ Generic Authentication and Authorization API (GAAAPI) that supports basic authentication and extended

authorization functionality for complex multi-domain resource provisioning [GAAA-NRP, IETF-RFC2904] that

requires inter-domain provisioning and authorization sessions management and supports the whole provisioned

services lifecycle. The basic GAAAPI functionality is implemented in the GAAA Toolkit (GAAA-TK) pluggable Java

Library that will be extended with additional functions for combined network and IT resources provisioning.

¶ Simple Policy Based Management interface that supports policy based processes and objects management. These

types of functions are called out from the Control and Management System that executes an object or runs a

process during its execution.

The messages to request CSSI functions are described in the following table:

Table 7.1: CSSI functions and messages

Functionality Message Direction Description

Data Encryption Encrypt (data)

Decrypt (cipher data)

Service or
Application
ăĄ Encryptor

Enrypts and decrypts data in a form of binary
data or XML document.

Protects data confidentiality.

Encrypt and Wrap (data)

Service or
Application
ăĄ Encryptor

Encrypts data and enclose them in a standard
container/envelop, e.g., XMLEncryption.

Data Signing Sign (data)

Validate (signed data, signature)

Application
ăĄ Signer

Signs data and validates signature where
data can be in a form of binary data or XML
document.

Protects data integrity.

Wrap and Sign (data)

Validate (container with signed
data)

Application
ăĄ Signer

Wraps data into standard container, signs
and attach signature.

Protects data integrity.

Authentication
and Delegation

Authenticate (ID, credentials) Application
ăĄ AuthN
Service

Request to retrieve monitoring information
about the status of a physical resource.

Issues AuthN token that confirms positive
authentication.

Delegate (AuthenticatedEntityID,
AuthN assertion, newID)

Application
ăĄ Identity
Manager

Allows delegation or mapping of the
authenticated entity.

Allows mapping between entities and roles in
different domains.

Authorization

AuthorizeAction (subject,
resource, action)

Application
ăĄ AuthZ
Service

Performs authorization of the request to do
action or the resource for the subject.

May issue AuthZ ticket issued as an
authorization credential/assertion.

AuthorizeActionSession (subject,
resource, action, SessionID)

Application
ăĄ AuthZ
Service

Performs authorization of the request to do
action or the resource for the subject and
binds AuthZ context to the SessionID.

May return AuthZ ticket issued as an
authorization credential/assertion.

Pilot token is issued as a session credential.

AuthoriseActionObligated
(subject, resource, action)

Application
ăĄ AuthZ
Service

Allows conditional AuthZ decision.
Additionally may return a set of conditions or
Obligations that shall be enforced either by
the resource or next domain in case of
multiple or multidomain resources access.

Policy Based
Management or
Tasks Execution

AuthoriseObject (object,
resource, policy)

Object/Process

ăĄ
Ctrl&Mngnt
Service

Allows policy based process/object
management or tasks execution.

AuthoriseObjectObligated
(object, resource, policy)

Object/Process

ăĄ
Ctrl&Mngnt
Service

Extends policy based process/object
management with obligated/conditional
decision.

Detail descriptions of Authentication and Delegation interface, Authorization interface are provided in subsequent sections.

7.2 !ǳǘƘŜƴǘƛŎŀǘƛƻƴ ŀƴŘ 5ŜƭŜƎŀǘƛƻƴ LƴǘŜǊŦŀŎŜ

Application CSSI service

Authentication request

Authentication response

Figure 7-1 ς Authentication sequence diagram

Msg
no.

Abstract message Message direction

1 Authentication Request Application Ą CSSI service

2 Authentication Response CSSI service ĄApplication

3 Delegation Request Application ĄCSSI service

4 Delegation Response CSSI service Ą Application

Message ς Authentication request

Elements Multiplicity Description Element Type

Message_Type 1 Type of the message Integer

Credential_type 1 Type of credential to authenticate Integer

Credential 1

Credential data, it could be
UsernameCredential element for
usename/password authentication or the
existing authentication token in the
AuthenticationTokenCredential element.

Credential

Element ς UsernameCredential

Sub-elements Multiplicity Description Element Type

Username 1 Username of the subject to authenticate String

Password_Type 1
Type of password. It could be the default
PasswordText(0) or PasswordDigest(1) which
using nonce value in digest.

Integer

Password_Value 1
Password information which related to the
password_type, e.g: hash of the password

String

Nonce 0..1
The cryptographic random nonce using for
password. The encoding type is Base64

String

Element ς AuthenticationTokenCredential

Sub-elements Multiplicity Description Element Type

Base64Encoding 1 The base64 encoding of XML credential String

Message ς Authentication response

Elements Multiplicity Description Element Type

Authentication_status 1
Authentication status: AUTHENTICATED (0)
or UNAUTHENTICATED (1)

Integer

Authentication_Token 0..1
If the Authentication_Status is
AUTHENTICATED, this field contains
authentication token in Base64 encoding.

String

7.3 !ǳǘƘƻǊƛȊŀǘƛƻƴ LƴǘŜǊŦŀŎŜ

Application CSSI service

Authorization request

Authorization response

Figure 7-2 ς Authorization sequence diagram

Msg
no.

Abstract message Message direction

1 Authorization Request Application Ą CSSI service

2 Authorization Response CSSI service ĄApplication

Message ς Authorization request

Elements Multiplicity Description Element Type

Message_Type 1 Type of the message Integer

SessionID 1
The authorization session Id to specify which

authorization service to request
String

Subject 1 The subject to authorize AttributeList

Resource 1 The resource to authorize AttributeList

Action 1 The action perform on the resource AttributeList

Environment 1
The environment information for

authorization
AttributeList

Element ς AttributeList

Sub-elements Multiplicity Description Element Type

NumberOfAttribute 1 The number of attribute in the list Integer

Attribute 1..n The attribute in the list Attribute

Element ς Attribute

Sub-elements Multiplicity Description Element Type

ID 1 The identifier of the attribute value String

Value 1 The value of the attribute String

Message ς Authorization response

Elements Multiplicity Description Element Type

Status 1
Contains one of following value:
AUTHORIZED (0) or UNAUTHORIZED (1)

Integer

Token 0..1
Contains returned authentication token if
the result is AUTHORIZED

String

7.4 !ǳǘƘŜƴǘƛŎŀǘƛƻƴ ŀƴŘ !ǳǘƘƻǊƛȊŀǘƛƻƴ ŦƻǊ bLt{ ŎƭƛŜƴǘπǎŜǊǾŜǊ

Workflows to support authentication and authorization for NIPS server could be in Pull model (Figure 7-3) or in Push model

(Figure 7-4).

Client Service/

Resource
Authorization

Server

Identity

Management

Server

Request

AuthN request

AuthN token response

Authorization request:

XACMLAuthzDecisionQuery

XACMLAuthzDecisionResponse:

(XACMLAuthzDecision assertion)

notAuthenticated

notAuthorized

Processing

Setup response (incl.

Authz token)

Session

establishment

Figure 7-3: Sequence diagram of Authentication and Authorization in Pull model

Client
TVS

Authorization

Server

Identity

Management

Server

Setup request

AuthN request

AuthN token response

Authorization request:

XACMLAuthzDecisionQuery

XACMLAuthzDecisionResponse:

(XACMLAuthzDecision assertion) ï AuthZ token

notAuthenticated

notAuthorized

Processing
Setup response (incl.

Authz token)

Session

establishment

Service/

Resource

Validate AuthN

token

Figure 7-4: Sequence diagram of Authentication and Authorization for NIPS-UNI in Push model

After receiving the NIPS response including the AuthZ token, in subsequent messages, the NIPS client could utilize this

token to get advantage of performance (Figure 7-5).

NIPS client

NIPS

server
TVS

Request

Validate AuthZ token

notAuthenticated/

notAuthorized

NIPS

processing

NIPS response

Authz validation

respose

Figure 7-5: Sequence diagram for NIPS client-server using AuthZ token

7.5 !!L wŜǉǳŜǎǘ ŀƴŘ wŜǎǇƻƴǎŜ CƻǊƳŀǘǎ

The AAI Authorization and Authentication protocol will use SAML protocol as a basic and in particular SAML2-XACML2

protocol that incapsulate XACML Request/Response messages. However it will be extended with the possibility to carry on

authorization tokens. Details will be worked out at the design and implementation stage.

8 D9¸{9w{ !ŎŎŜǎǎ /ƻƴǘǊƻƭ ¦ǎŜ /ŀǎŜǎ

According to use-cases at different layers SML, NCP+ and LICL, the AAI needs to fulfil following access control
use-cases:

¶ Access Control Use Cases at NCP+ : which is the interaction between the VIO-IT at SML and the VIO-N

at NCP+

¶ Access Control Use Cases at Upper-LICL: which are the interactions between the VIO (at SML and NCP+)

and the VIP at upper-LICL.

¶ Access Control Use Cases at Lower-LICL (PIP): These use-cases illustrate interactions between the VIP

and the PIP.

8.1.1 Access Control Use Cases at NCP+ (VIO-N)

The SML, under the context of the VIO-IT, could interact with NCP+ (the VIO-N) through the NIPS-UNI interface.
Access control use-cases at this interface are as follow:

Table 8.1: Permissions for NIPS-UNI interface

Permi
ssion

Role Resource Action Description

1 VIO-IT IT-
Advertisement

NIPS:Validate-IT-
Advertisement

Validation of IT advertisements provided by the VIO-IT

2 VIO-IT Network-
Service

NIPS:Setup VIO-IT is allowed to request the setup of a new
network service between two end-points (they could
be declared in terms of IT capabilities)

3 VIO-IT Network-
Service

 NIPS:Modify VIO-IT is allowed to request the modification of an
existing network service.

4 VIO-IT Network-
Service

NIPS:Request-
Quotation

VIO-IT is allowed to request the quotations for network
connectivity services between different end-points.

5 VIO-IT Network-
Service

NIPS:Delete VIO-IT is allowed to delete the network service
between to end-points

6 VIO-IT Monitoring-
Info

 NIPS:Request-
Monitoring-Info

VIO-IT is allowed to request/receive monitoring info

8.1.2 Access Control Use Cases at Upper-LICL (VIP)

The Upper-LICL, which is under context of the VIP, has external interfaces for other layers of other roles to
communicate with. They are SLI, CCI and NLI.

8.1.2.1 SLI interface

This interface is used by SML (VIO-IT) to invoke upper-LICL layer (VIP). Access control use-cases at this interface

are as summarized in the following table:

Table 8.2 : Permissions for SLI interface

Permi
ssion

Role Resource Action Description

1 VIO VR-RP SLI:Instantiate-VR-IT A VIO is allowed to request VR instantiation:

2 VIO VR SLI:Decommission-VR-IT A VIO is allowed to decommission a VR:

3 VIO VR-RP-Info SLI:Get-Available-VR-Pool-IT
A VIO is allowed to get available resource for a
resource pool

4 VIO VR SLI:Operate-VR
A VIO is allowed to operate/control on a particular
VR instance

5 VIO
VR-State-
Info

SLI:Monitor-VR-Info
A VIO is allowed to request the state of a
device/node

6 VIO
VR-Power-
Info

SLI:Monitor-VR-Info
A VIO is allowed to get device power consumption
of a device/node

7 VIO
VR-Status-
Info

SLI:Monitor-VR-Info
A VIO is allowed to get status of a device/node

8 VIO VR-Info SLI:Subscribe-VR-Monitoring
A VIO is allowed to subscribe monitoring
information of a device/node from VIP

9 VIO VR-Info SLI:Unsubscribe-VR-Monitoring
A VIO is allowed to remove monitoring
subscription of a device/node from VIP

10 VIO VR SLI:Add-VirtualNetworkIf
A VIO is allowed to add new virtual network
interface.

11 VIO VR SLI:Remove-VirtualNetworkIf
A VIO is allowed to remove virtual network
interface

12 VIO VR SLI:Create-StorageImage A VIO is allowed to create a new storage image

13 VIO VR SLI:Remove-StorageImage
A VIO is allowed to remove a storage image from a
node/VR

14 VIP VR-RP-Info SLI:Advertise-VR-Pool
A VIP is allowed to advertise available resource
pool

15 VIP
VR-RP-
Instantiatio
n-Status

SLI:Notify-VR-Info
VIP is allowed to notify instantiation request status
to VIO

16 VIP
VR-RP-
Decommissi
on-Status

SLI:Notify-VR-Info
VIP is allowed to notify a decommission request
status to VIO

17 VIP
VR-
Operation-
Status

SLI:Notify-VR-Info
VIP is allowed to notify a operation request status
to VIO

18 VIP VR-Info SLI:Notify-VR-Info
VIP is allowed to notify a subscription update to
VIO

8.1.2.2 CCI interface

These are access control use-cases between the NCP+ and the upper-LICL:

Table 8.3: Permissions for CCI interface

Permi
ssion

Role Resource Action Description

1 VIO-N VNode-Info CCI:Synch-Request VIO-N is allowed to request synchronize information of
virtual node at VIP (LICL)

2 VIO-N VNode CCI:Configure VIO-N is allowed to configure a cross-connection in the
virtual node at VIP (LICL)

3 VIO-N VNode-
Monitor-Info

CCI:Monitor VIO-N is allowed to get monitoring information from
the virtual node at VIP (LICL)

4 VIP VNode-Info CCI:Synch-Update VIP (LICL) is allowed to update information about node
and its interfaces to VIO-N (NCP+)

5 VIP VNode-
Operation-Info

CCI:Notify VIP is allowed to notify about cross-connection
operation progress to VIO-N (NCP+)

6 VIP VNode-Status-
Info

CCI:Notify VIP is allowed to notify about virtual node status to
VIO-N (NCP+)

8.1.2.3 MLI interface

These are access control use-cases between the SML and NCP+ to the upper-LICL:

Table 8.4: Permissions for MLI interface

Permi
ssion

Role Resource Action Description

1 VIO VI MLI:Request-VI A VIO is allowed to request a VI

2 VIO VI-Request MLI:Query-VI-Request-Status A VIO is allowed to query VI request status

3 VIO VI-Request MLI:Get-SLA-Offer A VIO is allowed to get SLA offer of sent VI request

4 VIO VI-Request MLI:Sign-SLA-Offer
A VIO is allowed to sign SLA Offer of sent VI
request

5 VIO VI MLI:Instantiate-VI
A VIO is allowed to request the instantiation of its
VI

6 VIO VI MLI:Decomission-VI
A VIO is allowed to request the decommissioning
of its VI.

7 VIO VR-IT MLI:ReplanningVI:Add-VR-IT
Replanning: Add IT node: The VIO asks to include a
new device on the VI

8 VIO VR-IT MLI:ReplanningVI:Modify-VR-IT
Replanning: Modify IT node: The VIO requests to
modify some of the characteristics of an IT node
(+/- storage, +/- computing power)

9 VIO VR-IT MLI:ReplanningVI:Delete-VR-IT
Replanning: Delete node: The VIO requests to
delete a device from the VI.

10 VIO VLink MLI:ReplanningVI:Add-VLink
Replanning: Add a network link: The VIO requests
to add a new link between two devices on the VI

11 VIO VLink MLI:ReplanningVI:Modify-VLink
Replanning: Modify link: The VIO requests to
modify the capacity of a link

12 VIO VLink MLI:ReplanningVI:Delete-VLink
Replanning: Delete link: The VIO requests to delete
a link from the VI.

13 VIO VI MLI:ReplanningVI:Modify-Time
Replanning: Modify VI: The VIO requests to modify
the timeline of a VI (+/- time reserved).

8.1.3 Access Control Use Cases at Lower-LICL (PIP)

Lower-LICL at PIP provides two interfaces for VIP running Upper-LICL: ROS interface and VR Management

interface. It also has the PR Management Interface which the PR-Admin can use to manage physical resources

at PIP.

8.1.3.1 ROS Interface

Table 8.5: Permissions for ROS interface

Permi
ssion

Role Resource Action Description

1 PIP VR-Mon-Info ROS:Notify-VR-Info PIP is allowed to send a VR monitoring (status
change) notification information to VIP through
ROS interface at Upper-LICL

2 PIP VR-
Operation-
Info

ROS:Notify-VR-Operation PIP is allowed to send a VR operation execution
status notification information to VIP through ROS
interface at Upper-LICL

3 PIP RP-
Operation-
Info

ROS:Notify-RP-Operation PIP is allowed to send a Resource Pool operation
execution status notification information to VIP
through ROS interface at Upper-LICL

4 PIP VR-Sync-Info ROS:Notify-VR-Info PIP is allowed to send a VR information update
(configuration change) to VIP through ROS
interface at Upper-LICL

5 VIP VR-RP ROS:Instantiate-VR-IT A VIP is allowed to request the instantiation of its
VR-ITs: from VR resource pool to VR

6 VIP VR ROS:Decommission-VR-IT A VIP is allowed to request the decommissioning
of its VR-IT (from VR to VR IT resource pool)

7 VIP VR ROS:Configure-VR A VIP is allowed to send configuration commands
to its VRs.

8 VIP VR-RP ROS:Get-Available-VR-Pool-IT A VIP is allowed to get available IT resources for
the VR IT resource pool

9 VIP VR ROS:Monitor-VR-Info A VIP is allowed to request/receive monitoring
information from its VRs.

8.1.3.2 VR Management interface

Table 8.6: Permissions for VR Management interface

Permi
ssion

Role Resource Action Description

1 VIP Resource-
Kinds-Info

Request-Resource-Kinds A VIP is allowed to request the Resource Kinds
information of a PIP + the PIP inter-domain
connections' information.

2 VIP LR Request-VR A VIP is allowed to request a set of VR to the PIP

3 VIP LR Instantiate-VR A VIP is allowed to request the instantiation of its
VR: from LR to VR (with VR network), or from LR to
VR resource pool (with VR IT)

4 VIP VR Decommission-VR A VIP is allowed to request the decommissioning
of its VR. With VR-IT, from VR-resource pool to LR

8.1.3.3 PR Management Interface

Table 8.7: Permissions for PR Management interface

Permi
ssion

Role Resource Action Description

1 PIP-Admin PR Add-PR PIP's Admin is allowed to add new PR to the PR
Management at Lower-LICL

2 PIP-Admin PR Delete-PR PIP's Admin is allowed to remove an existing PR to the
PR Management at Lower-LICL

3 PIP-Admin Link Add-Link PIP's Admin is allowed to add new link to the PR
Management at Lower-LICL

4 PIP-Admin Link Delete-Link PIP's Admin is allowed to remove an existing link to the
PR Management at Lower-LICL

5 PIP-Admin Domain Add-Domain PIP's Admin is allowed to add new domain to the PR
Management at Lower-LICL

6 PIP-Admin Domain Delete-Domain PIP's Admin is allowed to remove an existing domain to
the PR Management at Lower-LICL

7 PIP-Admin SLATemplate Add-SLA-Template PIP's Admin is allowed to add an SLA
template Management at Lower-LICL

8.2 ·!/a[!ǘǘǊƛōǳǘŜ tǊƻŦƛƭŜ ŦƻǊ D9¸{9w{

8.2.1 Resource profile

Attribute name Attribute ID Full XACML attributeId semantics

(e.g: ns-prefix =
http:// geysers.eu/)

Notes

Resource
Identifier

resource-id {ns-prefix}/{domain}/
resource/resource-id

Unique identifier of a
resource. This is the
value of VI-GRI, VR-LRI
or PR-LRI.

Resource Type resource-type {ns-
prefix}/{domain}/ resource/resource-
type

Specify type of
resource.

VI Identifier VI-id {ns-prefix}/{domain}/resource/vi-id This attribute
specifies the identifier
of the VI in which the
resource belongs to.

Domain resource-domain {ns-
prefix}/{domain}/resource/resource-
domain

Specify security
domain in which the
resource belongs to.

8.2.2 Subject profile

Subject related attributes allow building policy depending on the properties of the request Subject or user. Subject related

attributes are considered as a part of the XACML Subject definition.

Attribute name Attribute ID Full XACML attributeId
semantics

(e.g: ns-prefix =
http:// geysers.eu/)

Notes

Subject Identifier subject-id {ns-prefix/subject/subject-id Indicate the identifier
entity of a specific
role.

Subject Role subject-role {ns-prefix}/subject/subject-
role

E.g: VIO, VIO-N, VIP,
PIP

Subject
Confirmation
Data

subject-confdata {ns-prefix}/subject/subject-
confdata

This attribute
specifies the material
using to confirm
subject. It could be an
authentication token
(e.g: SAML assertion,
Keberos ticket)

8.2.3 Action profile

Attribute
name

Attribute ID Full XACML attributeId
semantics

(e.g: ns-prefix =
http:// geysers.eu/)

Notes

Action ID action-id {ns-prefix}/action/action-id Could use standard XACML
attribute:
urn:oasis:names:tc:xacml:1.0:
action:action-id

9 !!L LƳǇƭŜƳŜƴǘŀǘƛƻƴ ǿƛǘƘ D!!! ¢ƻƻƭƪƛǘ

The AAI implementation are implemented as Java OSGi service bundles that can be deployed in
Karaf/Servicemix enviroments, which includes authnsvc, authzsvc, tokensvc and the securitygateway bundles.

9.1 !ǳǘƘŜƴǘƛŎŀǘƛƻƴ ōǳƴŘƭŜ

9.1.1 Service configuration

The authentication service uses a configuration file to store its parameters, including its public-private keypair, passphrase,

the list of trusted certificates and the session life-time for the authentication token.

The global configuration file contains following parameters:

Parameter Default value Description

BaseDir authnsvc/etc/upper-licl Path to authnsvc configuration directory

KeyStore upperlicl-authnsvc.jks Keystore (.jks) of the authnsvc authority, using for signing

SAML assertions

KeyStorePassword cloudsecurity Password to access keystore

KeyAlias upperlicl-authnsvc Key alias of the private key used for signing SAML token

KeyPassword authnsvc-cloud Password to access private key

CredentialFileName Credentials Credentials (usernames, hashed passwords) of users.

CertificateTrustList ctl.properties File containing certificate trust list.

MaxSessionTimeOut 30 The maximal session timeout for the SAML token, in

minutes

9.1.2 Certificate and public-private keypair generation

The authentication bundle needs a public/private keypair for SAML assertion issuing and verification. This keypair and its

ŜǉǳƛǾŀƭŜƴǘ ·Φрлф ŎŜǊǘƛŦƛŎŀǘŜ ŀǊŜ ǎǘƻǊŜŘ ƛƴ ŀ ΦƧƪǎ ŦƛƭŜ ǎǇŜŎƛŦƛŜŘ ōȅ ǘƘŜ άYŜȅ{ǘƻǊŜέ ǇŀǊŀƳŜǘŜǊΦ ¢ƘŜ ǎŎǊƛǇǘ ǘƻ ƎŜƴŜǊŀǘŜ ǘƘƛǎ

ƪŜȅǇŀƛǊ ŀƴŘ ƛǘǎ ·Φрлф ŎŜǊǘƛŦƛŎŀǘŜ ƴŜŜŘǎ ǘƘŜ ΨƪŜȅǘƻƻƭΩ ƛƴǎƛŘŜ Ww9 WŀǾŀ wǳƴǘƛƳŜ 9ƴǾƛǊƻƴƳŜƴǘ ǇŀŎƪŀge.

#!/bin/bash

KEYSTORE=òupperlicl-authnsvc.jksò

STORETYPE=òJKSò

STOREPASS=òcloudsecurityò

KEYPASS=òauthnsvc-cloudò

ALIAS=òupperlicl-authnsvcò

VALIDITY=180

KEYSIZE=2048

keytool ïgenkey ïalias $ALIAS ïdname ñCN=UpperLICL- AuthnSvc, OU=SNE Group, O=UvA, C=N Lò ïvalidity

$VALIDITY ïkeypass $KEYPASS ñRSAò ïkeysize $KEYSIZE ïkeystore $KEYSTORE ïstorepass $STOREPASS ï

storetype $STORETYPE

keytool ïexportcert ïfile ñ$ALIAS.crtò ïkeystore $KEYSTORE ïstorepass $SOTREPASS ïalias $ALIAS - rfc

The content of the X.509 certificate file (.crt) needs to be directly copied to the certificate trust list file specified within the

global configuration.

9.1.3 User Management

¢ƘŜ ŎǊŜŘŜƴǘƛŀƭ ŦƛƭŜ ƛǎ ǳǎŜŘ ǘƻ ǎǘƻǊŜ ǳǎŜǊǎΩ ŀǳǘƘŜƴǘƛŎŀǘƛƻƴ ǇŀǎǎǿƻǊŘǎΦ 9ŀŎƘ ƭƛƴŜ ƛƴ ǘhe file contains a user's credentials with

following format:

$username:$base64_password_hashed:$base64_salt:$user_attribute_file

The password hash is computed from the hash operations of the plaintext password and a random generated string called

ΨǎŀƭǘΩΦ

hash_password = SHA1(SHA1(salt | password))

bƻǘŜ ǘƘŀǘ ŀƴ ŜȄǘŜǊƴŀƭ ŀŘƳƛƴƛǎǘǊŀǘƛƻƴ ǘƻƻƭ ΨŀǳǘƘƴǎǾŎ-ŀŘƳƛƴΩ ƛǎ ǇǊƻǾƛŘŜŘ ƛƴ ƻǊŘŜǊ ǘƻ ƎŜƴŜǊŀǘŜ ŎǊŜŘŜƴǘƛŀƭǎ ŦǊƻƳ ǳǎŜǊƴŀƳŜǎ

and passwords.

9.2 !ǳǘƘƻǊƛȊŀǘƛƻƴ ōǳƴŘƭŜ

9.2.1 Service configuration

The authzsvc configuration folder contains the policyconfig.xml file and the policies folder as follows, first for the Upper-

LICL and secondly for the lower-LICL.

\ policyconfig.xml

\ policies \

 permission - cci - operations.xml

 permission - mli - replanning - vlink - operations.xml

 permission - mli - repl anning - vr - it - operations.xml

 permission - mli - vi - operations.xml

 permission - mli - vi - request - operations.xml

 permission - ros - notifications.xml

 permission - sli - operations.xml

 PPS- PIP - Role.xml

 PPS- VIO- N- Role.xml

 PPS- VIO- Role.xml

 RPS- PIP - Role.xml

 RPS- VIO- N- Role.xml

 RPS- VIO- Role.xml

\ policyconfig.xml

\ policies \

 permission - prmi.xml

 permission - ros - operations.xml

 permission - vrmi.xml

 PPS- PIP - Admin - Role.xml

 PPS- VIP - Role.xml

 RPS- PIP - Admin - Role.xml

 RPS- VIP - Role.xml

List of policies are specified in the policyconfig.xml, including two types of policies: context and reference policies. The

context policies are policies identified based on the attribute of request, in this case are roles policies. Other policies are

identified by references.

9.2.2 Policy management

XACML policies are organized using RBAC profile as follows:

9.2.2.1 Permission policies

Permissions of an interface are defined in one or several xml files having file name syntax:

Permission - $interfaceName - $permissionGroup.xml

Permissions policies are:

¶ permission-cci-operations.xml

¶ permission-mli-replanning-vlink-operations.xml

¶ permission-mli-replanning-vr-it-operations.xml

¶ permission-mli-vi-operations.xml

¶ permission-mli-vi-request-operations.xml

¶ permission-prmi.xml

¶ permission-ros-notifications.xml

¶ permission-ros-operations.xml

¶ permission-sli-operations.xml

¶ permission-vrmi.xml

9.2.2.2 Permissions assigned to role policies

Permissions that are mapped to the role policies have the filename:

PPS- $RoleName- Role.xml

Each policy of a role contains references to permission policies assigned to this role. For example with permissions assigned

to VIP role policy, it has permissions of VRMI interface, ROS-operations, SLI notifications and CCI notifications.

Figure 9-1: Sample permissions assigned to the VIP role policy

Policy filenames are:

¶ PPS-PIP-Admin-Role.xml

¶ PPS-PIP-Role.xml

¶ PPS-VIO-N-Role.xml

¶ PPS-VIO-Role.xml

¶ PPS-VIP-Role.xml

When the administrator needs to change determined permissions of a given role, he only needs to add or remove the

necessary references in the above files.

9.2.2.3 Role policies

These policies contain role attribute matching to link with permission assigned to role policies. Policy filenames are:

¶ RPS-PIP-Admin-Role.xml

¶ RPS-PIP-Role.xml

¶ RPS-VIO-N-Role.xml

¶ RPS-VIO-Role.xml

¶ RPS-VIP-Role.xml

10 /ƻƴŎƭǳǎƛƻƴ

The document described the proposed AAI for on-demand provisioned virtualised infrastructure services and provided

general implementation suggestions that provide necessary information for the ongoing AAI design and implementation.

YD: add aboiut future development, your plans about federation, trust model and infrastructure modelling.

11 wŜŦŜǊŜƴŎŜǎ
[1] Generalised Architecture for Dynamic Infrastructure Services (GEYSERS Project) - http://www.geysers.eu/
[2] GEYSERS Project Deliverable D2.1 - Initial GEYSERS Architecture & Interfaces Specification
[3] GEYSERS Project Deliverable D3.1 - Functional Description of the Logical Infrastructure Composition Layer (LICL)
[4] Generic Architecture for Cloud Infastrcuture as a Service (IaaS) provisioning model. SNE Technical Report, 2011.
[5] Demchenko, Y., J. van der Ham, M. Ghijsen, M. Cristea, V. Yakovenko, C. de Laat, "On-Demand Provisioning of

Cloud and Grid based Infrastructure Services for Collaborative Projects and Groups", The 2011 International
Conference on Collaboration Technologies and Systems (CTS 2011), May 23-27, 2011, Philadelphia, Pennsylvania,
USA

[6] NIST Definition of Cloud Computing v15. [Online] http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-
v15.doc

[7] OASIS Reference Architecture Foundation for Service Oriented Architecture 1.0, Committee Draft 2, Oct. 14, 2009.
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf

[8] /ƘŀǇǇŜƭƭΣ 5ΦΣ Ϧ9ƴǘŜǊǇǊƛǎŜ ǎŜǊǾƛŎŜ ōǳǎϦΣ hΩwŜƛƭƭȅΣ WǳƴŜ нллпΦ нпт ǇǇΦ
[9] OSGi Service Platform Release 4, Version 4.2. - http://www.osgi.org/Download/Release4V42
[10] TMF Service Delivery Framework. http://www.tmforum.org /servicedeliveryframework/4664/home.html
[11] TMF Software Enabled Services Management Solution. -

http://www.tmforum.org/BestPracticesStandards/SoftwareEnabledServices/4664/Home.html
[12] Zhao, G., C. Rong, J. Li, F. Zhang, Y. Tang, "Trusted Data Sharing over Untrusted Cloud Storage Providers," IEEE

International Conference on Cloud Computing Technology and Science, November 30-December 03, Indianapolis,
Indiana. pp. 97-103. ISBN: 978-0-7695-4302-4.

[13] "Assessment of Access Control Systems", by Vincent C. Hu, David F.Ferraiolo, D. Rick Kuhn. Interagency Report

7316. [Online] Available: http://csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf

[14] Samarati, P., S.C. de Vimercati, Access Control: Policies, Models, and Mechanisms, in book "Foundations of

Security Analysis and Design", LNCS, Springer Berlin/Heidelberg, 2001, Pages 137-196

[15] SaƴŘƘǳΣ wΦ ϧ {ŀƳŀǊŀǘƛΣ tΦΣ мффпΦ ά!ŎŎŜǎǎ /ƻƴǘǊƻƭΥ tǊƛƴŎƛǇƭŜǎ ŀƴŘ tǊŀŎǘƛŎŜέΣ L999 /ƻƳƳǳƴƛŎŀǘƛƻƴ aŀƎŀȊƛƴŜΣ

September 1994, pp. 40-48.

[16] Sandhu, R., Coyne, E. J., Feinstein, H. L. & Youman, C.E. 1996, "Role-Based Access Control Models", IEEE

Computer, February 1996, pp. 38-47.

[17] Information Technology - Role Based Access Control, Document Number: ANSI/INCITS 359-2004, InterNational

Committee for Information Technology Standards, 3 February 2004, 56 p.

[18] ISO/IEC 10181-3:1996 Information technology -- Open Systems Interconnection -- Security frameworks for open

systems: Access control framework. ς !ǾŀƛƭŀōƭŜ ƛƴ άh{D Authorization !tLέΦ - http://www.opengroup.org/online-

pubs?DOC=9690999199&FORM=PDF

[19] ITU-T Rec. X.812 (1995) | ISO/IEC 10181-3:1996, Information technology - Open systems interconnection -

Security frameworks in open systems: Access control framework. [Online]. Available:

http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.812-199511-I!!PDF-E&type=items

[20] RFC2903 Laat de, C., G. Gross, L. Gommans, J. VollbrechǘΣ 5Φ {ǇŜƴŎŜΣ ϦDŜƴŜǊƛŎ !!! !ǊŎƘƛǘŜŎǘǳǊŜΣέ 9ȄǇŜǊƛƳŜƴǘŀƭ

RFC 2903, Internet Engineering Task Force, August 2000. ftp://ftp.isi.edu/in-notes/rfc2903.txt

[21] RFC 2904 - "AAA Authorization Framework" J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de

Bruijn, C. de Laat, M. Holdrege, D. Spence, August 2000 - http://tools.ietf.org/html/rfc2904

[22] RFC2748: The COPS (Common Open Policy Service) Protocol, Edited Durham, D., January 2000. -

http://www.ietf.org/rfc/rfc2748.txt

[23] RFC2753: A Framework for Policy-based Admission Control, January 2000. - http://www.ietf.org/rfc/rfc2753.txt

[24] RFC3621: Framework for Session Set-up with Media Authorization, April 2003. -
http://www.ietf.org/rfc/rfc3521.txt

[25] "GAAA Toolkit pluggable components and XACML policy profile for ONRP", Phosphorus Project Deliverable D4.3.1.
ς September 30, 2008. [Online]. Available: http://www.ist-phosphorus.eu/files/ deliverables/Phosphorus-
deliverable-D4.3.1.pdf

[26] Demchenko, Y., M. Cristea, C. de Laat, E. Haleplidis, Authorization Infrastructure for On-Demand Grid and Network
Resource Provisioning, Proceedings Third International ICST Conference on Networks for Grid Applications
(GridNets 2009), Athens, Greece, 8-9 September 2009. ISBN: 978-963-9799-63-9

[27] Security Guidance for Critical Areas of Focus in Cloud Computing V2.1. Cloud Security Alliance, December 2009.

http://www.cloudsecurityalliance.org/csaguide.pdf

[28] Cloud Computing: Benefits, risks and recommendations for information security, Editors Daniele Catteddu, Giles

Hogben, November 2009. http://www.enisa.europa.eu/ act/rm/files/deliverables/cloud-computing-risk-

assessment

[29] Amazon AWS Security Center. Certification and Accreditation. - http://aws.amazon.com/security/#certifications

[30] Amazon IAM. http://aws.amazon.com/documentation/iam/

[31] Microsoft Azure Cloud Service.

 http://www.microsoft.com/windowsazure/AppFabric/Overview/default.aspx

[32] Demchenko, Y., C. Ngo, C. de Laat, "Access Control Infrastructure for On-Demand Provisioned Virtualised
Infrastructure Services", International Symposium on Security in Collaboration Technologies and Systems
(SECOTS2011), Part of CTS2011 Conference, 23-27 May 2011, Philadelphia, USA.

[33] RFC5280 - Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. May

2008. http://www.ietf.org/rfc//rfc5280

[34] Web Services Security: SOAP Message Security 1.1 (WS-Security 2004). OASIS Standard Specification, 1 February
2006. [Online] http://www.oasis-open.org/committees/download.php/ 16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf

[35] Trusted Computing Group (TCG). [Online]. Available: https://www.trustedcomputinggroup.org/home
[36] NIST Special Publication 800-14 - Generally Accepted Principles and Practices for Securing Information Technology

Systems. National Institute of Standards and Technology. September 1996. http://csrc.nist.gov/
publications/nistpubs/800-27/sp800-27.pdf

[37] Demchenko, Y., D.R. Lopez, J.A. Garcia Espin, C. de Laat, "Security Services Lifecycle Management in On-Demand
Infrastructure Services Provisioning", International Workshop on Cloud Privacy, Security, Risk and Trust (CPSRT
2010), 2nd IEEE International Conference on Cloud Computing Technology and Science (CloudCom2010), 30
November - 3 December 2010, Indianapolis, USA.

[38] Demchenko, Y., C. de Laat, T. Denys, C. Toinard, Authorization Session Management in On-Demand Resource
Provisioning in Collaborative Applications. COLSEC2009 Workshop, The 2009 International Symposium on
Collaborative Technologies and Systems (CTS 2009), May 18-22, 2009, Baltimore, Maryland, USA. IEEE Catalog:
CFP0916A-CDR. ISBN: 978-1-4244-4586-8. Pp. 201-208.

[39] Assertions and Protocols for the OASIS Security Assertion Markup Language (SAML) V2.0, OASIS Standard, 15

March 2005. [Online]. Available: http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

[40] SAML 2.0 Profile of XACML 2.0, Version 2.0. OASIS Standard, 1 February 2005. [Online]. Available:

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-saml-profile-spec-os.pdf

[41] Shibboleth Attribute Authority Service. [Online]. Available from: http://shibboleth.internet2.edu/

[42] RFC2853 - Generic Security Service API Version 2 : Java Bindings. June 2000. http://www.ietf.org/rfc/rfc2853.txt

[43] eXtensible Access Control Markup Language (XACML) Version 2.0, OASIS Standard, 1 February 2005. [Online].

Available: http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

[44] Multiple resource profile of XACML 2.0, OASIS Standard, 1 February 2005, available from http://docs.oasis-

open.org/xacml/2.0/access_control-xacml-2.0-mult-profile-spec-os.pdf

[45] Core and hierarchical role based access control (RBAC) profile of XACML v2.0, OASIS Standard, 1 February 2005.

[Online]. Available: http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf

[46] The Liberty Alliance Project. [Online]. Available from: http://www.projectliberty.org/

[47] Liberty Alliance ID-WSF 1.1 Specifications. [Online]. Available from:

http://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_wsf_1_1_specifications

[48] Security Assertion Markup Language (SAML) 2.0 Technical Overview, Working Draft 21, 21 February 2007.

[Online]. Available from: http://www.oasis-open.org/committees/download.php/22553/sstc-saml-tech-

overview-2%200-draft-13.pdf

[49] Pautasso, C., O.Zimmermann, F.Leymann, "RESTful Web Services vs. Big Web Services: Making the Right
Architectural Decision", 17th International World Wide Web Conference (WWW2008), Beijing, China.

[50] Fuse ESB - OSGi based ESB. - http://fusesource.com/products/enterprise-servicemix/#documentation
[51] Apache ServiceMix an Open Source ESB. - http://servicemix.apache.org/home.html
[52] Spring Security. Reference Documentation. http://static.springsource.org/spring-security/site/

docs/3.1.x/reference/springsecurity-single.html
[53] GFD.80 "The Open Grid Services Architecture, Version 1.5". Open Grid Forum, September 5, 2006.
[54] Web Services Architecture. W3C Working Group Note 11 February 2004. [Online]. Available:

http://www.w3.org/TR/ws-arch/
[55] Web Services Security: SOAP Message Security 1.1 (WS-Security 2004). OASIS Standard Specification, 1 February

2006. [Online] http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf

[56] Web Services Security: SAML Token Profile 1.1, OASIS Standard, 1 February 2006. [Online]. Available from:

http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf

[57] Hierarchical resource profile of XACML 2.0, OASIS Standard, 1 February 2005, available from http://docs.oasis-

open.org/xacml/2.0/access_control-xacml-2.0-hier-profile-spec-os.pdf

[58] Privacy policy profile of XACML v2.0. http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-

privacy_profile-spec-os.pdf

[59] XML Digital Signature profile of XACML v2.0. http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-

dsig-profile-spec-os.pdf

[60] eXtensible Access Control Markup Language (XACML) Version 3.0, CD-1, 16-Apr-09. http://www.oasis-

open.org/committees/download.php/32425/XACML-3.0-cd-1-updated-2009-May-07.zip

[61] XACML v3.0 Administration and Delegation Profile Version 1.0, CD-1, 16-Apr-09. http://www.oasis-

open.org/committees/download.php/32425/XACML-3.0-cd-1-updated-2009-May-07.zip

[62] XACML PDP Metadata Version 1.0, OASIS Working Draft, 24 February 2008. http://www.oasis-

open.org/committees/download.php/27316/xacml-3.0-metadata-v1-wd-01.zip

[63] .Ŝǘǘƛƴƛ /ΦΣ {Φ WŀƧƻŘƛŀΣ ·Φ {Φ ²ŀƴƎΣ 5Φ ²ƛƧŜǎŜƪŜǊŀΣ άtǊƻǾƛǎƛƻƴǎ ŀƴŘ hōƭƛƎŀǘƛƻƴǎ ƛƴ tƻƭƛŎȅ aŀƴŀƎŜƳŜƴǘ ŀƴŘ {ŜŎǳǊƛǘȅ

!ǇǇƭƛŎŀǘƛƻƴǎέΣ tǊƻŎŜŜŘƛƴƎǎ ƻŦ ǘƘŜ нуth VLDB Conference, Hong Kong, China, 2002.

[64] OpenSAML library. [Online] Available: https://spaces.internet2.edu/display/OpenSAML/Home/

[65] Generic AAA Toolkit pluggable Java library. [Online] Available:

http://www.phosphorus.pl/software.php?id=gaaa_tk

[66] Sun's XACML Implementation. [Online] Available: http://sunxacml.sourceforge.net/

[67] Canh Ngo; Demchenko, Y.; de Laat, C., "Toward a Dynamic Trust Establishment approach for multi-provider

Intercloud environment," Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th International

Conference on , vol., no., pp.532,538, 3-6 Dec. 2012

http://sunxacml.sourceforge.net/

Appendix A ¦ǎƛƴƎ {!a[ŀƴŘ ·!/a[ǘƻ ǎǳǇǇƻǊǘ ƎŜƴŜǊƛŎ
!ǳǘƘƻǊƛȊŀǘƛƻƴ ǎŎŜƴŀǊƛƻ

The diagram below illustrates where SAML protocol and assertions and XACML Request/Response messages can be used

in a typical policy based decision making [40].

The following sections will provide details about SAML and XACML languages and their use for access control in distributed

service- oriented applications.

PDP

AA PEP

PAP

Attribute
Repository

Policy
Repository

Request
XACMLPolicyQuery

Response
XACMLPolicyStatement

Assertion
XACMLPolicyStatement

Assertion
XACMLPolicyStatement

Assertion
SAMLAttributeStatement

Assertion
SAMLAttributeStatement

Response: SAMLAttributeStatement

Request: SAMLAttributeStatement

Request:
SAMLAttributeStatement

Response:
SAMLAttributeStatement

Assertion
SAMLAttributeStatement

Response
XACMLDecisionStatement

XACML Request
XACMLRequest

XACML Response
XACMLResponse

Request
XACMLDecisionQuery

Note:

¶ All messages and statements semantics relates to
SAML 2.0 core specification and SAML profile for
XACML.

¶ XACML specific messages are marked explicitly with

Figure A.1. Using SAML and XACML for messaging and assertions

A.1 {!a[ǎŜŎǳǊƛǘȅ ŀǎǎŜǊǘƛƻƴǎ ŜȄǇǊŜǎǎƛƻƴ ŀƴŘ ŜȄŎƘŀƴƎŜ ŦƻǊƳŀǘ

A.1.1 SAML Overview

Security Assertion Markup Language (SAML) is a an XML-based standard for expressing and communicating authentication,

authorization and attribute information between distributed services.

The SAML operational security model suggests that all participating entities are members of the same security federation

that have established business agreements, trust relations and share common attributes semantics [15]. More advanced

SAML and Web Services based protocols can support attributes and assertions exchange between different federations

and security domains.

SAML Version 1.1 specification was published in 2003 and has been broadly used in identity management, web access

applications and Web services security. Current SAML Version 2.0 specification was published in 2006 and adopted

experience of the two major SAML implementation areas such as Shibboleth [41] and Liberty Alliance Identity Federation

Framework [46, 47].

The major SAML application areas include:

Web Single Sign-On (WebSSO) allows a user who has authenticated to one web site to access other web sites that are the

members of the same federation. SAML enables SSO providing a mean to communicate an authentication assertion from

the original login site to other sites a user wants to access or where the user request is forwarded or redirected. The

assertion then can be verified and validated and user authentication is confirmed.

Attribute-Based Authorization allows granting or denying user access to the protected resources based on user attributes

that can be groups, roles or other specific to applications user characteristics. SAML provides a mechanism to communicate

user attributes in addition to the user identity. User identity and attributes are managed and provide by the Identity

Provider (IdP) and Attribute Authority Service (AAS) that operates as a part of federation. Separating IdP/AAS from

Authentication and Authorization services simplifies typically distributed identity and access control infrastructure

management.

Web Services Security (WS-Security) framework uses SAML as one kind of the security tokens within SOAP messages to

convey security and identity information between actors in Web services interactions. The WS-Security SAML Token Profile

is used by ǘƘŜ [ƛōŜǊǘȅ !ƭƭƛŀƴŎŜΩǎ LŘŜƴǘƛǘȅ ²Ŝō {ŜǊǾƛŎŜǎ CǊŀƳŜǿƻǊƪ όL5-WSF) [18], Web Services Trust and Web Service

Federation frameworks to support SSO, identity federation, identity mapping and other services.

A.1.2 SAML Basic Concepts and Components

SAML specification and architecture defines basic building components that allow a number of use cases and supports

transfer of identity, attribute and authorization information between autonomous entities that have established trust

relations. The core SAML specification defines the structure and content of both assertion and protocol messages used to

transfer this information.

The means by which lower-level communication or messaging protocols (such as HTTP or SOAP) are used to transport

SAML assertion or protocol messages is defined by the SAML bindings. SAML profiles define constrains and/or extensions

to SAML assertions, protocol or binding to support the usage of SAML for a particular use case or application.

Two other concepts used for building and deploying interoperable SAML environment are metadata and authentication

context.

Metadata defines a way to express and share configuration information between SAML parties and include the following

ŘŀǘŀΥ ǎƛǘŜΩǎ ǎǳǇǇƻǊǘŜŘ {!a[ōƛƴŘƛƴƎǎΣ ƻǇŜǊŀǘƛƻƴŀƭ ǊƻƭŜǎ όLŘtΣ {ŜǊǾƛŎŜ tǊƻǾƛŘŜr (SP), etc), identifier information, supporting

identity attributes, federation names, and trusted keys information for encryption and signing.

Authentication context defines a way to provide information regarding the type and strength of authentication that a user

employed when they authenticated at an identity provider. This information is provided as a part of an assertion's

authentication statement. An SP can also include an authentication context in a request to an IdP to request that the user

be authenticated using a specific set of authentication requirements, such as a multi-factor authentication.

Figure A.2 below illustrates relations between the basic SAML concepts and components and more details provided below

[48].

Assertions
Authentication, attribute
and issuer information

Protocols
Request and response

messages

Bindings
Mapping of SAML protocols

onto standard messaging and
communication protocols

Profiles
Combination of assertions,

protocols, and bindings to support
a defined use case

Metadata
Configuration data for
Identity and Service

Providers

Authentication Context
Type and strength of

authentication

Figure A.2. SAML components [48].

A.1.3 SAML Assertions

SAML allows for one party to assert security information in the form of statements about a subject. An assertion contains

some basic required and optional information that applies all assertions, and usually contains a subject of the assertion,

conditions used to validate the assertion, and assertion statements. SAML defines three kinds of statements that can be

carried within an assertion:

Authentication statements: These are created by the party that successfully authenticated a user. At a minimum, they

describe the particular means used to authenticate the user and the specific time at which the authentication took place.

Attribute statements: These contain specific identifying attributes about the subject όŦƻǊ ŜȄŀƳǇƭŜΣ ǘƘŀǘ ǳǎŜǊ άWƻƘƴ 5ƻŜέ ƛǎ

ŀ ƳŜƳōŜǊ ƻŦ άtǊƻƧŜŎǘ !έ ǿƛǘƘ ǊƻƭŜ άǊŜǎŜŀǊŎƘŜǊέύΦ

Authorization decision statements: These are issued based on the authorization decision may state what the subject is

entitled to do on the given resource (for example, άWƻƘƴ 5ƻŜέ ƛǎ ǇŜǊƳƛǘǘŜŘ ǘƻ άŎǊŜŀǘŜ-ǊŜǎŜǊǾŀǘƛƻƴέΣ άǎǘŀǊǘ-experiment-

ǎŜǎǎƛƻƴέ ƻƴ ǘƘŜ ǊŜǎƻǳǊŎŜ ά9ƭŜŎǘǊƻƴƛŎ aƛŎǊƻǎŎƻǇŜ ·t{ултсέύΦ Authorization decision statement defined by the SAML2-

XACML2 profile may contain full authorization context (see details below).

A.1.4 SAML Protocols

SAML defines a number of generalised request/response protocols:

Assertion Query and Request Protocol: This is the basic SAML protocol that defines a set of queries by which SAML

authentication, authorization or attribute assertions may be obtained. The Query form of this protocol defines how a

relying party can ask for assertions (new or existing) on the basis of a specific subject and the desired statement type.

Authentication Request Protocol: Defines a means by which a principal (or an agent acting on behalf of the principal) can

request assertions containing authentication statements and, optionally, attribute statements. This protocol is used in

Web Browser SSO Profile when redirecting a user from an SP to an IdP in order authenticate user and optionally obtain

user attributes.

Single Logout Protocol: Defines a mechanism to allow logout of active sessions associated with a principal. The logout can

be directly initiated by the user, or initiated by an IdP or SP because of a session timeout, administrator command, etc.

Artifact Resolution Protocol: Provides a mechanism by which SAML protocol messages may be passed by reference using

a small, fixed-length value called an artifact. The artifact receiver uses the Artifact Resolution Protocol to ask the message

creator to dereference the artifact and return the actual protocol message.

Name Identifier Management and Name Identifier Mapping Protocols: Provide mechanisms to change or map the value

or format of the name identifier used to refer to a principal. The issuer of the request can be either the service provider or

the identity provider.

A.1.5 SAML Profiles

SAML profiles define how the SAML assertions, protocols, and bindings are combined and constrained to provide greater

interoperability in particular usage scenarios. The profiles usually named by used protocol and a defined application area

and include the following major profiles:

Web Browser SSO Profile: Defines how SAML entities use the Authentication Request Protocol and SAML Response

messages and assertions to achieve single sign-on with standard web browsers. It defines how the messages are used in

combination with the HTTP Redirect, HTTP POST, and HTTP Artifact bindings.

Assertion Query/Request Profile: Defines how SAML entities can use the SAML Query and Request Protocol to obtain

SAML assertions over a synchronous binding, such as SOAP.

Enhanced Client and Proxy (ECP) Profile: Defines a specialized SSO profile where specialized clients or gateway proxies

can use the Reverse-SOAP (PAOS) and SOAP bindings.

Single Logout Profile: Defines how the SAML Single Logout Protocol can be used with SOAP, HTTP Redirect, HTTP POST,

and HTTP Artifact bindings.

Identity Provider Discovery Profile: Defines one possible mechanism for service providers to learn about the identity

providers that a user has previously visited.

Other profiles are defined for Artifact Resolution Protocol, Name Identifier Management and Name Identifier Mapping

Profile.

A.2 {!a[!ǎǎŜǊǘƛƻƴ ŘŀǘŀƳƻŘŜƭ ŀƴŘ ŦƻǊƳŀǘ

A.2.1 SAML top level elements

Figures below provide more detailed breakdown for SAML 2.0 Assertion format. The root element is called Assertion and

mandatory contains the Issuer element and attributes Version, ID and IssueInstant. Depending on the profile the Assertion

element may contain one or many statements such as defined in the standard AuthnStatement, AuthzDecisionStatement,

AttributeStatement, or application defined statement that can be added through the abstract Statement element

providing standard extension point. Other optional elements include Subject which is important in many profiles and use

cases dealing with the identity information, Conditions and Advice. SAML Assertion may contain attached signature defined

by the XML Signature standard.

In the compact XML DTD format the Assertion element can be descried as:

<!ELEMENT Assertion (Issuer, Signature?, Subject?, Conditions?, Advice?,

(Statement | AuthnStatement | AuthzDecisionStatement | AttributeStatement)*)>

<!ATTLIST Assertion

 Version CDATA #REQUIRED

 ID ID #REQUI RED

 IssueInstant CDATA #REQUIRED

>

The Subject element consists of two basic components ς subject ID that can be expressed in different formats
and SubjectConfirmation that provides information how the subject identity was verified or authenticated. Both
types of information can be encrypted.The Subject element contains the following sub-elements:

<!ELEMENT Subject (((BaseID | NameID | EncryptedID), SubjectConfirmation*) |

SubjectConfirmation+)>

<!ELEMENT SubjectConfirmation (SubjectConfirmationData?)>

<!ATTLIST SubjectConfirmation

 Method CDATA #REQUIRED

>

<!ELEMENT SubjectConfirmationData (#PCDATA | *)*>

<!ATTLIST SubjectConfirmationData

 NotBefore CDATA #IMPLIED

 NotOnOrAfter CDATA #IMPLIED

 Recipient CDATA #IMPLIED

 InResponseTo CDATA #IMPLIED

 Addre ss CDATA #IMPLIED

>

<!ELEMENT SubjectLocality EMPTY>

<!ATTLIST SubjectLocality

 Address CDATA #IMPLIED

 DNSName CDATA #IMPLIED

>

SAML Assertion provides the facility to describe conditions for assertion/credentials use and validity in the Conditions

element that contains time validity constrains attributes, and elements that describe audience/community restriction,

proxy/delegation restrictions and can also be extended to other application defined conditions.

The Advice element contains any additional information that the SAML authority wishes to provide. This information may

be ignored by applications without affecting either the semantics or the validity of the assertion. Some potential uses of

the Advice element include evidence supporting the assertion claims to be cited, either directly (through incorporating the

claims) or indirectly (by reference to the supporting assertions), timing and distribution points for updates to the assertion,

etc.

Figure A.3. SAML Assertion top elements

Figure A.4. SAML Subject elements

A.2.2 SAML AuthnStatement and AttributeStatement format

The SAML AuthnStatement is used to convey authentication statement issued by an Identity Provider or an authentication

service and has the following structure:

<!ELEMENT AuthnStatemen t (SubjectLocality?, AuthnContext)>

<!ATTLIST AuthnStatement

 AuthnInstant CDATA #REQUIRED

 SessionIndex CDATA #IMPLIED

 SessionNotOnOrAfter CDATA #IMPLIED

>

<!ELEMENT AuthnContext (((AuthnContextClassRef, (AuthnContextDecl | AuthnContextDeclRef)?)

| (AuthnContextDecl | AuthnContextDeclRef)), AuthenticatingAuthority*)>

<!ELEMENT AuthnContextClassRef (#PCDATA)>

<!ELEMENT AuthnContextDecl (#PCDATA)>

<!ELEMENT AuthnContextDeclRef (#PCDATA)>

<!ELEMENT AuthenticatingAuthority (#PCDATA)>

The AuthnStatement has one mandatory attribute AuthnInstant that specifies the time at which the authentication took

place, and two optional attributes SessionIndex that specifies the index of a particular session between the principal

identified by the subject and the authenticating authority, and SessionNotOnOrAfter that specifies a time instant at which

the session between the principal identified by the subject and the

The SubjectLocality specifies the DNS domain name and IP address for the system from which the assertion subject was

apparently authenticated. SAML authority issuing this statement must be considered ended. The AuthnContext element

specifies the context of an authentication event. The element can contain an authentication context class reference, an

authentication context declaration or declaration reference, or both.

Listing below provides an example of the authentication Assertion containing AuthnStatement element.

<Assertion xmlns="urn:oasis:names:tc:SAML:2.0:assertion"

xmlns:saml="urn:oasis:names:tc:SAML :2.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol" ID="e0fcd9f023440a05d540ba365e1ed1fe"

IssueInstant="2004 - 12- 29T17:14:24.085Z" Version="2.0">

 <Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid - format:X509SubjectName"

NameQualifier="cnl: subject:subject:AAAuthority">CN=Agent Smith, O=Matrix, C=NL</Issuer>

 <Subject>

 <NameID Format="urn:oasis:names:tc:SAML:2.0:nameid - format:emailAddress"

NameQualifier="cnl:subject:customer">WHO740@users.collaboratory.nl</NameID>

 <SubjectConfirmation>

 <ConfirmationMethod>email</ConfirmationMethod>

 <ConfirmationMethod>callback</ConfirmationMethod>

 </SubjectConfirmation>

 </Subject>

 <Conditions NotBefore="2004 - 12- 28T23:00:00.000Z" NotOnOrAfter="2005 - 01-

29T21:22 :22.000Z"/>

 <AuthnStatement AuthenticationInstant="2004 - 12- 29T17:14:23.875Z"

AuthenticationMethod="AuthenticationMethod_X509_PublicKey">

 <SubjectLocality DNSAddress="dns.collaboratory.nl" IPAddress="192.30.180.22"/>

 </AuthnStatement>

</Assertion>

Figure A.5. Example SAML 2.0 Authentication Assertion

¢ƘŜ {!a[!ǘǘǊƛōǳǘŜ{ǘŀǘŜƳŜƴǘ ǇǊƻǾƛŘŜǎ ŀ ŦƻǊƳŀǘ ŦƻǊ ŎƻƳƳǳƴƛŎŀǘƛƴƎ {ǳōƧŜŎǘΩǎ ŀǘǘǊƛōǳǘŜǎ ƛǎǎǳŜŘ ōȅ ǘƘŜ !ǘǘǊƛōǳǘŜ !ǳǘƘƻǊƛǘȅ

or Identity Provider. Figure A.6 shows the structure of the SAML AttributeStatement element. It contains the following

elements:

<!ELEMENT AttributeStatement (Attribute | EncryptedAttribute)+>

<!ELEMENT Attribute (AttributeValue*)>

<!ATTLIST Attribute

 Name CDATA #REQUIRED

 NameFormat CDATA #IMPLIED

 FriendlyName CDATA #IMPLIED

>

The AttributeStatement element describes a statement by the SAML authority asserting that the assertion subject is

associated with the specified attributes. Assertions containing AttributeStatement elements must contain a Subject

element. The AttributeStatement element may contain either attribute reference/value or encrypted attribute.

The Attribute element contains The Attribute element is used within an attribute statement to express particular attributes

and values associated with an assertion subject, it identifies an attribute by name and optionally includes its value(s). The

Attribute element has a obligatory attribute Name that holds the name of attribute, and optional attributes the

NameFormat representing the classification of the attribute name in URI format, and the FriendlyName providing a more

human-readable form of the attribute's name, which may be useful in cases in which the actual Name is complex or opaque,

such as an OID or a UUID.

Listing below provides an example of the authentication Assertion containing AuthnStatement element.

<Assertion xmlns="urn:oasis:names:tc:SAML:2.0:assertion"

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol" ID="b4d00e1500d2a10a43d3d2fb5a578028"

IssueInstant="2004 - 12- 29T17:17:24.164Z" Version="2.0">

 <Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid - format:X509SubjectName"

NameQualifier="cnl:subject:subject:AAAuthority">CN=Agent Smith, O=Matrix, C=NL</Issuer>

 <Subject>

 <NameID Format="urn:oasis:names:tc:SAML:2.0:nameid - format:emailAddress"

NameQualifier="cnl:subject:customer">HEIS007@staff.collaboratory.nl</NameID>

 <SubjectConfirmation>

 <ConfirmationMethod>email</ConfirmationMethod>

 <ConfirmationMetho d>callback</ConfirmationMethod>

 </SubjectConfirmation>

 </Subject>

 <Conditions NotBefore="2004 - 12- 28T23:00:00.000Z" NotOnOrAfter="2005 - 01-

29T21:22:22.000Z"/>

 <AttributeStatement>

 <Attribute xmlns:typens="urn:cnl" xmlns:xsd="http://www.w3.org/2 001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema - instance" AttributeName="AttributeSubject"

AttributeNamespace="urn:cnl">

 <AttributeValue xsi:type="typens:subject">@cnl:subject:role:manager</AttributeValue>

 <AttributeValue xsi:type="t ypens:subject">cnl:subject:role</AttributeValue>

 <AttributeValue xsi:type="typens:subject">jobID</AttributeValue>

 </Attribute>

 </AttributeStatement>

</Assertion>

Figure A.6. Example SAML 2.0 Attribute Assertion

A.2.3 SAML2.0 profile of XACML: SAML-XACML protocol and Authorization assertions format

!ƭǘƘƻǳƎƘ ·!/a[ŘŜŦƛƴŜǎ ·!/a[wŜǉǳŜǎǘκwŜǎǇƻƴǎŜ ƳŜǎǎŀƎŜǎ ŦƻǊƳŀǘΣ ƛǘ ŘƻŜǎƴΩǘ ǇǊƻǾƛŘŜ ŀƴȅ ǎǳƎƎŜǎǘƛƻƴǎ ŀōƻǳǘ ǳǎƛƴƎ ƻƴŜ

or another transport container or protocol. Using XACML messages directly as authorization assertions impose some

ǎŜŎǳǊƛǘȅκƛƴǘŜƎǊƛǘȅ ǇǊƻōƭŜƳǎ ōŜŎŀǳǎŜ ǘƘŜȅ ŘƻƴΩǘ ƘŀǾŜ ƳŜŎƘŀƴƛǎƳǎ ǘƻ ōƛƴŘ ŀǳǘƘƻǊƛǘȅ όǘǊǳǎǘύ ƻǊ ŜȄǇǊŜǎǎκƛƳǇƭȅ ǎŜŎǳǊƛǘȅ

restrictions as they are provided by the such SAML elements as Issuer or Conditions.

SAML2.0 profile of XACML (SAML-XACML) combines well established SAML security assertions format [40] and reach

functionality of the XACML policy format [43]. Such a solution provides a good combination between XACML policy

expression and evaluation functionality and SAML security assertion management functionality. SAML-XACML profile is

supported by the popular Open Source SAML implementation OpenSAML2.

The SAML2.0 profile of XACML defines the queries and assertions to support XACML based AuthZ services.

The XACMLAuthzDecisionQuery and XACMLPolicyQuery provide extension to the SAML protocol. The

XACMLAuthzDecisionStatement and XACMLPolicyStatement provide extensions to the SAML assertions.

The XACMLAuthzDecisionQuery is introduced as additional query type for the SAML2.0 protocol. In contrary to the basic

{!a[нΦл ǉǳŜǊƛŜǎΣ ǘƘŜ ·!/a[!ǳǘƘȊ5ŜŎƛǎƛƻƴvǳŜǊȅ ŘƻŜǎƴΩǘ Ŏƻƴǘŀƛƴ ǘƘŜ {ǳōƧŜŎǘ ŜƭŜƳŜƴǘ ōǳǘ ǳǎŜŘ ŀǎ ŎƻƴǘŀƛƴŜǊ ŦƻǊ ǘƘŜ ȄŀŎƳƭ-

context:Request message.

Figure A.7. XACML2.0 XACMLAuthzDecisionQuery format.

The XACMLAuthzDecisionStatement provides a container for XACML Request and Response messages that actually hold

all necessary information about the authorization decision in a native XACML format. Figure below illustrates how the

XACMLAuthzDecisionStatement is folded into the SAML assertion.

