Intercloud Control and Management Plane with
XMPP

Peter Membrey*, Yuri Demchenko!
*Department of Computing
Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
Email: cspmembrey @comp.polyu.edu.hk
TSystem and Network Engineering Group
University of Amsterdam, Amsterdam, The Netherlands
Email: y.demchenko@uva.nl

Abstract—This paper introduces XMPP and suggests how
this technology might be used to help implement Intercloud
communication. It gives an introduction to XMPP and how
the architecture fits together as well as a discussion of the
services it provides ‘out of the box’. It then discusses secondary
benefits of the protocol and highlights how XMPP could be
an appropriate base protocol for implementing the Intercloud
Control and Management Plane. This is followed by discussion
of early results from a research project that looks at the ease
of extending XMPP and the tractability of the standardization
process.

I. INTRODUCTION

Applications today are designed for a very different envi-
ronment from that of even a few years ago. Where previously
applications would be designed to run on a single server or
perhaps on a specialized cluster of servers, today applications
are designed to be modular, distributed and to be composited
in numerous ways. The age of the micro-service has arrived.
These applications have the ability to dynamically adapt to
changes in load and effectively self-heal.

These applications leverage Cloud architecture to give them-
selves an adaptive edge, but it is no longer enough to be
able to burst within a single cloud. Applications are getting
more complex with individual components requiring specific
features that a single cloud may not be able to provide.
Applications therefore need to be able to burst or even
potentially migrate to a completely different cloud without
prior agreement. Intercloud is a multi-layered technology and
approach that will allow applications to operate natively across
cloud platforms.

The Intercloud Architecture Framework (ICAF) [1] defines
a general architectural framework for implementing multi-
cloud services and introduces the Intercloud Control and
Management Plane that defines a number of interfaces into
the stack.

This paper explores some initial ideas with regards to using
XMPP to implement the Intercloud Control and Management
Plane layer in the Intercloud Architecture. First it discusses
the XMPP protocol itself and then highlights some of the
features that make it an ideal candidate for building an open
standard for the ICCMP layer. Next is a brief discussion on an
ongoing research project to determine how appropriate XMPP

/

[CampusA
! Infrastructure |

[CampusB
+ Infrastructure

1aas Cloud

Instrument Provider

{ Network Provider 1

Visualise

laa$ Cloud Provider

Dedicated
Network
& <

I I 1 | I | I
{ Intercloud Network Infrastructure and]

Intercloud Management Infrastructure
1 1 1

Dedicated

Networl
Connectivity

|| Cloud Carrier or Network Provider 2

Fig. 1. Intercloud

is for building such protocols and whether the standardization
process is tractable. Finally it then discusses how these features
can be used with reference to the ICCMP layer.

The remainder of this paper is built as follows. Section II
introduces some typical use cases and scenarios for multi-
cloud applications that require tight integration. Section III
introduces and gives an overview of two existing Intercloud
paradigms (notably ICAF and IEEE P2302) that together
form part of the proposed integrated solution. Section IV
gives and overview of XMPP with Sections V, VI and VII
discussing the services, benefits and applicability to Interlcoud
respectively. Section VIII discusses a research project to
demonstrate XMPP’s extensibility. Lastly, Section IX presents
the conclusions.

II. GENERAL USE CASES FOR INTERCLOUD

The Intercloud Architecture has a number of relevant use
cases. To provide additional context and overview, these use
cases are provided:

1) For business and enterprise, migrating workloads to
the cloud is seemingly vital for survival, especially in
competitive markets. The first stage for such a migration
would be to allow the integration of cloud services with

the existing legacy systems that a given entity may have.
The second stage would be the migration of general
services to the cloud and operating directly from there,
although this itself would need to be staggered and done
in stages. The final stage is for business and enterprise to
develop and deploy cloud-native applications that inte-
grate with the platform and feature scalability, reliability
and self-healing attributes.

2) Infrastructure for cross-organization projects, especially
those that are scientific in nature (where big data needs
to be collected, distributed and processed) are becoming
critical to deal with modern workloads. Such infrastruc-
ture is not limited to compute or storage and is likely
to also consist of network and transport layer resources
as well. This will need to be provisioned and managed
on-demand [2].

3) Scalable disaster recovery is also a unique feature of the
cloud environment. Elastic storage allows a business to
store practically unlimited amounts of data, and pay on
demand. This is ideal for backing up critical data or data
that must be held for regulatory reasons. In addition, the
ability to migrate a compute workload into the cloud, can
provide a business with Business Continuity Planning
(BCP) and Disaster Recovery Planning (DRP), which
is also mandated by many regulators. This will allow
the business to not only quickly restore operations but
to potentially bring additional services online without
requiring the business to restore its local systems first.

One of the defining features of cloud computing is that all
of the resources available in the cloud can be provisioned on
demand as needed. Resources such as compute, storage and
networking should be provisionable and have the ability to
integrate with the legacy systems that a business or entity may
have. That is to say that there location of the cloud resources
should not be visible or affect the operation of the legacy
systems. In addition, the platform used by the cloud provider
should not impose any restrictions on the architecture or use
cases of the business or end user.

The primary goal of any IT infrastructure is to support
the operations of the entity that built it. Enterprise systems
and research infrastructure support commercial and scientific
workloads respectively. The ability of the cloud to allow
the provisioning and deploying of complex infrastructures on
demand simplifies the building of such systems.

Figure 1 [3] gives an example workflow (either enterprise
or scientific) and shows how cloud services can be used to
closely map the workflow requirements to the infrastructure
and then deployed on demand. It also demonstrates how an
Intercloud architecture can support the sample use case. The
entity in question has a number of legacy systems running on
two inter-operating sites. In order to meet certain bandwidth
and latency requirements (a guarantee of service, perhaps an
SLA) the links between the two sites may need to be dedicated
leased lines.

The example also demonstrates how the infrastructure takes
advantage of different types of cloud computing, such as

Platform as a Service (PaaS - VR6 to VR7), Infrastructure as
a Service (IaaS - VR3 to VRS5) and other virtualized resources
(VRI1 and VR2). These systems are able to integrate and
interact with the legacy on-site systems described earlier.

To ensure the efficient operation of such an infrastructure,
there is a requirement for management, both of the individ-
ual resources and the mechanisms by which these resources
interact. Existing models and cloud platforms typically do
not support this architecture and thus a new encompassing
architecture, the Intercloud, is required in order to provide
this functionality and allow the integration of existing cloud
platforms.

III. INTERCLOUD FRAMEWORKS

This section provides general information about two Inter-
cloud frameworks that motivate the proposed XMPP based
Intercloud signaling protocol. Although the frameworks are
presented separately, they are not mutually exclusive and are
complimentary in most respects.

A. ICAF and components

In order to create an Intercloud as described above, the
necessary components can be defined as follows:

1) Multilayer Cloud Services Model (the CSM): provides
a model similar to that of the OSI model and describes the
vertical relationships (providing for interaction, integration and
compatibility) between the existing cloud models (including
IaaS, PaaS and SaaS). This component also encompasses any
other layers or related components that form part of the cloud
services infrastructure.

The layers that form the stack are defined as follows (where
‘CMS’ denotes CMS defined layers):

e CMS6: Customer owned and managed applications and
resources

o CMSS5: Intercloud Access and Deliver Infrastructure and
components (ICADI) that provide the services and func-
tions needed to connect multiple cloud domains

e CMS4: The Cloud Services Layer may contain any
number of different cloud services (such as IaaS, PaaS
and SaaS)

e CMS3: Orchestration and composition layer that is gen-
erally provided by Cloud Management Software such as
OpenStack or OpenNebla

e CMS2: The Cloud Virtualization Layer, generally pro-
vided by platforms such as VMWare, Xen and KVM

e« CMSI1: The Physical Platform such as physical service
hardware, network links and infrastructure)

2) Intercloud Control and Management Plane (ICCMP):
provides a means of command and control for the Inter-
cloud. This layer includes signaling (creating, managing and
destroying sessions), sharing configuration (for migration),
monitoring (determining the status of a resource) and real time
optimization. This layer is also responsible for sharing the state
needed for scaling an application or service and for routing
data and resources as required.

3) Intercloud Federation Framework (ICFF): provides the
protocols and processes need for clouds operating in indepen-
dently administered domains to be able to federate. The layer
should support this federation at each layer provided that the
necessary services and gateways are available. Examples of
the layers that should support this include both computational
and business services and provide the means for exchanging
name spaces and related semantics.

4) Intercloud Operation Framework (ICOF): provides high
level functionality for inter-provider operational and business
interaction. This includes the management of enterprise work
flows, negotiation and management of SLAs (Service Level
Agreements) and the related business accounting. A number
of actors are defined by the ICOF layer along with how they
relate to each other and their required interactions particularly
in terms of management, ownership and resource operation.
The ICOF layer is built upon and requires the support of both
the ICCMP and ICFF layers.

B. Intercloud Control and Management Plane (ICCMP)

The Intercloud Control and Manage Plane ICCMP - see
Figure 2 [3], updated to show XMPP) provides the mecha-
nism for cloud based applications to communicate, interact
and manage sessions between each other and with common
services provided by cloud platforms. This requires a reliable
and scalable messaging layer that supports routing, service
discovery and notification. This layer could be built directly
on top of TCP/IP. However protocols already exist that offer
these features with one such protocol being XMPP. XMPP au-
tomatically routes messages to endpoints and provides support
for querying remote entities about the services, features and
protocols that they support. In addition with rosters, XMPP
provides a way to send push notifications directly to interested
parties on a change of state.

C. IEEE P2302 Intercloud Interoperability and Integration
Standard

The IEEE P2302 Intercloud model is highly inspired by
the design of the Internet itself [4]. That is, just as the
Internet is a ‘ubiquitous and interoperable’ network, so will
the Intercloud be a ‘ubiquitous and interoperable’ network of
clouds. Two key components that are introduced as part of
this model are Intercloud Exchanges and the Intercloud root.
Intercloud Exchanges are synonymous with the peering points
as traditionally seen with ISPs. In this case an Intercloud
Exchange is a nexus where clouds can inter-operate and
communicate directly.

The Intercloud Root is envisioned to be similar in nature
to DNS [5], a distributed entity that provides a trusted source
of information regarding Intercloud Exchanges and that will
act as an anchor point for various ‘root’ level services. The
Intercloud Root is the subject of the research project discussed
in Section VIII of this paper, where Raft was implemented over
XMPP to provide distributed consensus.

Layer 7 — Applications
User defined Applications

User defined i

Platform |
and

SW&Apps §

User defined
| SW&Apps |

Layer 6 — SaaS/Apps
Cloud based Apps/Software

Layer 5 - Paas
Cloud based Platform

Layer 4 - aaS

l1aas Mware

Layer 4 - laaS
Cloud Infrastructure

Provider
defined
Infrastructure §
and
OS&Virt
Platform

Layer 3 - Composition
Virtual Resources Composition

Provider
defined
0S&Virt
Platform

Layer 2 - Virtualisation
Resources Abstraction and
Virtualisation

Layer 1 - Physical
HW Platform/Network

N
Intercloud Management Infrastructure
Root Info&Routing, XMPP Messaging Infra & Servers, etc.)

..

Fig. 2. Example ICCMP communication between the laaS and the PaaS
domains that may use standard interfaces and proprietary interfaces. XMPP
can be used for inter-domain multi-layer signaling and control messages.

IV. XMPP OVERVIEW

In this section XMPP will be examined more closely
to determine its applicability for performing the necessary
functions for the ICCMP.

XMPP (Extensible Messaging and Presence Protocol) was
initially developed in the late 90’s in response to the growing
number of incompatible IM (Instant Messaging) platforms that
were in general use [6]. Jeremie Miller decided to create
an alternative and open communication protocol and released
the first version of ‘Jabber’ in 1999. This protocol was then
standardized by the IETF in a number of RFCs, the most
current being RFC6120 (XMPP: Core) [7] and RFC6121
(XMPP: Instant Messaging and Presence) [8].

XMPP is distributed in a similar way to SMTP [9]. Each
domain will generally have one server representing it. Each
server will receive connections from its own local clients
as well as maintaining direct connections to other servers
with which it wants to communicate. This is the key design
difference between XMPP and SMTP.

Although XMPP is generally used for sending instant mes-
sages (IM applications), the architecture itself is designed to
provide near real-time messaging for any purpose. The core of
XMPP already supports key features that the ICCMP would
need, such as presence and service discovery. With the Jingle
XEP, XMPP can also be used in a similar fashion to SIP,
to create, manage and destroy out-of-band connections. This
provides, at scale with a trusted technology, all the features
needed for the ICCMP.

Some potentially useful services for Intercloud (taken from
XMPP: The Definitive Guide [6]):

e Presence (RFC-3921) [10]

e Roster (RFC-3921) [10]

o Notifications (XEP-0060) [11]

« Service Discovery (XEP-0030) [12]

« Jingle (effectively SIP [13] over XMPP) (XEP-0166) [14]

A. XMPP Servers

There is usually one server per domain and it is most
commonly hosted by the entity that owns that domain. This
draws interesting parallels to the Intercloud. It is likely that
each domain of control (cloud provider) will want to run
its own Point of Presence (PoP), that is each will want to
maintain administrative control over its own node on the
XMPP network. This distributed nature, and localization of
control, is ideal in the Intercloud environment.

XMPP servers find each other based on their domain name.
There is a standard DNS SRV record that an XMPP server
will query in order to find which server is authoritative for
a given domain. Once the server has been identified, XMPP
will establish a connection to the server port specified by
DNS. It will then verify the remote server’s identity using
TLS and certificate-based authentication. This authentication
is two-way - the receiving server will also verify the identity
of the incoming server. Because the server is trusted, messages
coming from that server’s domain, will also be trusted as it is
assumed that the server is authoritative.

Therefore the XMPP architecture can really be thought of as
similar to SMTP. As SMTP is well known and understood in
the industry this makes working with and adjusting to XMPP
much more tractable.

V. XMPP SERVICES
A. Presence

Presence is one of the most powerful features of native
XMPP. The ability to determine whether another user or entity
is available and its current status makes real-time messaging
more flexible. When a user’s status changes, this update is
pushed in real time to all interested parties.

B. Roster

The roster provides a list of known and authenticated users
that the owner is allowed to see and interact with. When a
user signs on, its status is broadcast to every account on its
roster. Those accounts will update the user’s status and then
send their current status in return.

C. Notifications

Notifications are similar to one-to-one messages but the sys-
tem is designed to push a large number of updates efficiently
in one direction. It is also similar in design to a lightweight
PubSub system in that notifications are sent to channels or
topics. This allows clients to subscribe to specific updates and
notifications that interest them.

D. Service Discovery

Service Discovery allows agents to determine what facilities
another agent or server supports. This is particularly important
in XMPP because of how diverse the landscape is in terms of
implementations.

E. Jingle

Jingle is an extension to XMPP (XEP-0166) [14] that
implements a negotiation protocol that is heavily inspired by
SIP [13]. This allows for very flexible negotiation, creation and
destruction of out-of-band connections. This allows XMPP to
remain simple but to provide support for advanced integration
with other protocols and systems.

V1. BENEFITS OF USING XMPP

There are a number of benefits in using XMPP as the
underlying communication protocol for Intercloud communi-
cation and the ICCMP layer in particular. Some of the benefits
include:

¢ Open standard (IETF / RFC)

o Security

o Scalability

e Real time

o Implementations already exist

o Mature technology

+ Documented extension process

A. Open standard

The XMPP protocol has been well documented as an
open standard by the IETF. These have been formalized in
RFC6120 [7] and RFC6121 [8]. As part of the standardization
process, the protocol has been thoroughly reviewed and tested.
In addition, as the protocol is an open standard, it can be
freely implemented without worrying about licensing or other
hindrances.

B. Security

XMPP leverages TLS encryption and certificate verification
to provide strong authentication for remote servers. There are
a number of different implementations for servers, clients and
supporting libraries that allow for a diverse code base. The
XMPP standard is still evolving and additional improvements
to security are ongoing projects.

C. Scalability

XMPP is highly scalable. As anyone may deploy an XMPP
server, like SMTP, there is effectively no limit on how many
servers may be deployed. In addition, XMPP uses a ‘PUSH’
model.

D. Real time

Due to the PUSH model, XMPP users are able to commu-
nicate in real time. As long as the receiving agent is logged
into their server, they will receive messages as soon as they
become available.

E. Implementations already exist

There are a large number of XMPP servers and clients
(applications and libraries) available for use. By being able to
re-use existing infrastructure, the system will necessarily be
layered. Development efforts can then focus on implementing
ICCMP without the need to focus on low-level transport
details.

F. Mature technology

XMPP has been around for 15 years in one form or another.
It has stood the test of time and numerous production systems
(such as Google Chat) have been built on top of it. This
maturity leads to a great deal of confidence in the architecture
which in turn makes adoption an easier and more straight
forward process.

G. Documented extension process

XMPP has the concept of XEP’s (XMPP Extension Pro-
tocols). Enhancements that would enable XMPP to handle
Intercloud would not simply be ‘hacked’ into a system.
Instead the approach will be documented, examined by the
XMPP community (which is welcoming and supportive) and
greatly improved with their feedback. Once an XEP has been
approved, any vendor may implement that feature. XMPP
features are detectable at run time with XMPP’s service
discovery.

VII. XMPP AND INTERCLOUD

The previous sections introduced the XMPP protocol and
highlighted some of the features that might make it a good fit
for Intercloud. In addition in the last section, the benefits of
XMPP as a choice for a transport layer were also discussed
with an emphasis on reliability, scalability and long-term
viability. Now that XMPP has been introduced, a brief look
at how it might fit into an Intercloud framework can be
considered.

A. Payload agnostic

XMPP is based on XML streams. It has the ability to carry
any data that can be represented in XML (including binary if
it is Base64 encoded). It can theoretically carry any sort of
messages between agents in both directions. This allows for
great flexibility in the design of the ICCMP where it could
then be assumed that the underlying protocol (XMPP) would
take care of routing and the delivery of messages. This can
then be descoped from the ICCMP layer.

B. Discover Remote Clouds

XMPP uses DNS SRV records to discover which server is
responsible for which domain. This means that if an agent
wishes to communicate with Cloud Company A, it can simply
look up the SRV records for their domain. Once an agent is
connected to a Cloud, it can use Service Discovery to find
other nodes.

C. Service Discovery

An agent can use Service Discovery to determine whether
a given node offers ‘Cloud Services’. If the facilities are
available, the agent can request more information about what
is available. This could include which types of service (such
as compute or storage) are available or potentially even price
lists. This can all be done at the XMPP layer without recourse
to a higher protocol.

D. Status Discovery

Assuming that the agent connects to a cloud that it is
authorized to use, it could ask for its roster or service list. This
would list all of the services belonging to that agent and their
current status. The agent would be able to discover the current
state of its account with a given cloud provider. Although this
example is described from an agent point of view, this agent
could easily belong to another cloud rather than an end user.

E. Resource Creation

An agent would be able to send requests to a remote node
to instantiate resources. By representing this in XMPP, the
remote resource could be modeled as an XMPP identity or
account. For example when a remote cloud creates a resource,
it can create an entry in its roster. At this stage, the original
agent can now see the status of the resource and interact with
it directly. This could cycle through different statuses. These
would be pushed in real time to all entities on its roster which
would include the agent.

The remote agent could be running on the cloud resource
itself or it could simply be an abstraction. It can also see its
resources and its current status and presence. The agent can
interact with it directly and because native XMPP is being
used, this could be easily integrated into client libraries. No
additional protocol would be needed over the XMPP cloud
extensions.

VIII. RAFT IMPLEMENTATION

As part of ongoing research on the IEEE P2302 project,
a research project was undertaken to take a message-based
protocol (in this case the Raft distributed consensus algorithm
[15]) and attempt to implement it natively in XMPP. There
were two primary goals for this research, namely, to determine
how easy it would be to extend XMPP natively to a new pro-
tocol and how easy it would be to work with the community’s
standardization process to have the protocol accepted on the
Standards track.

Extending XMPP (where the ‘X’ stands for extensible) was
a straight forward process. As XMPP is a streaming XML
protocol, it lends itself to extension. Creating the stanzas
to carry the Raft payload was mostly a case of matching
the content from Raft to an appropriately named attribute
in XMPP. The difficulty then is not in creating the XMPP
implementation but in having a well-developed protocol to
actually implement in XMPP. XMPP is also amenable to
iterative development.

Working with the XSF (XMPP Standards Foundation) to ap-
prove the ‘Raft over XMPP” XEP (XMPP Extension Proposal)
for the Standards track was a good experience that ultimately
ended in the creation of ‘XEP-0362 Raft Over XMPP’ [16].
There are a number of existing XEPs such as XEP-0001
(XMPP Extension Protocols) [17] and XEP-0143 (Guidelines
for Authors of XMPP Extension Protocols) [18] which assist
in the authoring and preparation of XEPs for consideration
by the XSF Council. There is an active mailing list for
discussing potential new standards and getting feedback from

the community (standards@xmpp.org), which leads to more
robust and higher quality protocols. The XSF Council then
votes on proposed XEPs (known informally as ProtoXEPs) to
determine if they should be accepted onto the Standards track.
In either case, feedback is given to the author(s) on how to
improve and further refine their XEP proposal.

In particular then, XMPP is not only easy to extend but
explicitly designed to be so. Implementing the Raft consensus
algorithm and preparing the XEP, especially with the guidance
provided from a very active community, was straight forward.
The standardization process itself is easy to understand and
presented no particular obstacles, making the implementation
of the ICCMP and its standardization by the XSF a very
tractable proposition.

Raft over XMPP: Requesting votes

VoteResponse

membrey.hlk dukgo.com

__VoteReqguest -

f\.’oteRequestJ,-'\a'oteResponse “YoteRequest |WoteResponse
/
" N o/
peter@membrey.hk peter@dukgo.com

Fig. 3. Raft over XMPP: Voting for a new leader

IX. CONCLUSION

This paper introduced XMPP and briefly discussed its
architecture. It then discussed some of the services that XMPP
provides natively that could be put to good use in developing
the ICCMP layer (features such as Service Discovery and
Presence). Next, a number of additional benefits surround-
ing the XMPP protocol (such as community, openness and
scalability) were highlighted. The question of where XMPP
could be applied to Intercloud communication was discussed
and some examples were given of how the majority of the
ICCMP layer could be implemented directly in XMPP.

The Intercloud needs a reliable means of exchanging infor-
mation and managing connections. Such a system would need
to be scalable, distributed and reliable. XMPP as a base pro-
tocol can supply the vast majority of those needs immediately
using existing technology. For features specific to Intercloud,
like the XEP for Raft (XEP-0362), these features can be easily
formalized and put together in an open specification for all
parties to use.

XMPP is a strong candidate for the Intercloud ICCMP layer
and potentially any protocol that requires near real time mes-
saging. Although originally designed for Instant Messaging in
the form of Jabber, when the protocol was standardized by
the IETF in RFC’s 6120 [7] and RFC 6121 [8], as XMPP, it
was with the specific intention of making the protocol easily
extensible. These extensions are managed and curated by the
XSF (XMPP Standards Foundation).

As discussed in previous sections, XMPP has a number
of features built into the protocol that make it amenable to

implementing the ICCMP layer. It’s an pre-existing protocol
that has been used for over 15 years in real world scenarios.
It comes with security built in, with SASL authentication and
TLS encryption as standard. It supports presence notifications
as well as service discovery. In short, many of the key
requirements for implementing the ICCMP are immediately
available in XMPP for use.

However XMPP does have its limitations. It is a streaming
XML protocol which makes it a poor choice for carrying large
amounts of binary data. As discussed early, the Jingle XEP
implements support for out-of-band file transfers, so although
XMPP is not necessarily an ideal carrier, it comes with built-in
support for signaling and managing external connections.

X. ACKNOWLEDGEMENTS

This research involved collaboration with the IEEE Inter-
cloud Testbed Project Group. The related Intercloud research
was supported by EU Projects CYCLONE and GEANT4
(grant agreement no. 691567, Research and Education Net-
working), and CYCLONE (grant agreement no. 644925, Ad-
vanced Cloud Infrastructures and Services).

REFERENCES

[1]1 Y. Demchenko, M. X. Makkes, R. Strijkers, and C. De Laat, “Intercloud
architecture for interoperability and integration,” in Cloud Computing
Technology and Science (CloudCom), 2012 IEEE 4th International
Conference on. 1EEE, 2012, pp. 666-674.

L. Badger, T. Grance, R. Patt-Corner, and J. Voas, “Draft cloud com-
puting synopsis and recommendations,” NIST special publication, vol.
800, p. 146, 2011.

Y. Demchenko, C. Ngo, C. De Laat, J. Rodriguez, L. M. Contreras,
J. A. Garcia-Espin, S. Figuerola, G. Landi, and N. Ciulli, “Intercloud
architecture framework for heterogeneous cloud based infrastructure
services provisioning on-demand,” in Advanced Information Networking
and Applications Workshops (WAINA), 2013 27th International Confer-
ence on. 1EEE, 2013, pp. 777-784.

D. Bernstein and D. Vij, “Intercloud exchanges and roots topology and
trust blueprint,” in Proc. of 11th International Conference on Internet
Computing, 2011, pp. 135-141.

P. V. Mockapetris, “Domain names-concepts and facilities,” 1987.

P. Saint-Andre, K. Smith, and R. Tron¢on, XMPP: the definitive guide.
” O’Reilly Media, Inc.”, 2009.

P. Saint-Andre, “Rfc 6120: Extensible messaging and presence protocol
(xmpp): Core (2011),” URL http://tools. ietf. org/html/rfc6120 [2011-08-
28].

[2]

[3]

[4]

[5]
[6]

[7]

[8]
[9]

, “Extensible messaging and presence protocol (xmpp): Instant
messaging and presence (rfc 6121), ietf, march 2011.”

J. Klensin, “Rfc 5321simple mail transfer protocol (smtp),” RFC 5321,
Tech. Rep., 2008.

The IETF, “RFC3921 — Extensible Messaging and Presence Protocol
(XMPP): Instant Messaging and Presence,” Tech. Rep., 2004.

P. Millard, P. Saint-Andre, and R. Meijer, “Xep-0060: Publish-
subscribe,” XMPP Standards Foundation, vol. 1, p. 13, 2010.

J. Hildebrand, P. Millard, R. Eatmon, and P. Saint-Andre, “Xep-0030:
service discovery,” XMPP Standards Foundation, Tech. Rep, 2008.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “Sip: session initiation proto-
col,” Tech. Rep., 2002.

S. Ludwig, J. Beda, P. Saint-Andre, R. McQueen, S. Egan, and J. Hilde-
brand, “Xep-0166: Jingle,” XMPP Standards Foundation, 2009.

D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm (extended version),” 2014.

P. Membrey, “Xep-0362: Raft over xmpp,” XMPP Standards Foundation,
2015.

P. Saint-Andre, “Xep-0001: Xmpp extension protocols,” Viitattu, vol. 27,
p. 2013, 2010.

——, “Xep-0134: Xmpp design guidelines,” 2010.

[10]
(1]
[12]

[13]

[14]
[15]
[16]
(17]

[18]

