
Impact of Information Security measures on the
Velocity of Big Data Infrastructures

Lionel Dupré
EBRC (European Business Reliance Centre)

Luxembourg
lionel.dupre@gmail.com

Yuri Demchenko
University of Amsterdam

y.demchenko@uva.nl

Abstract— Encryption is often viewed as a major drawback

which hinders the performance of processing systems. This
perception is not wrong; encrypted storage, memory and
communications usually perform much slower than systems which
process data in the clear. Big Data applications is no exception to
the rule: it was designed with Volume and Velocity requirements
in mind, and security (i.e. encryption) was initially not considered;
perimeter security was deemed sufficient, and Big Data systems
were confined to back-end operations. Considering the recent
developments in the field (AES-NI processors, Key Management
Servers, homomorphic encryption), the encryption vs
performance paradigm needs to be actually measured to re-
evaluate preconceived reservation.

This research found that encryption is no longer an obstacle to
efficient and fast Big Data processing, thanks to massive
processing parallelisation (which distributes also the encryption
payload), new CPU technologies which allow encryption
instructions to perform much faster, the use of SSD storage, and
finally the clever data-centric use of encryption in HDFS. The
paper provides analysis of four strategies in using data encryption
in Hadoop based Big Data applications, which have been tested on
the testbed built on Amazon Web Services (AWS) platform using
advanced AWS monitoring data. Tests were performed on
datasets of relatively modest size (about 5-20 Gigabytes), and
performance was measured as all data could fit in each node’s
RAM. On larger datasets (e.g. of Terabytes scale), data
partitioning may be required to obtain similar results.

Index Terms— Big Data Infrastructure, Big Data Security, Data
Encryption, Hadoop, Big Data Applications Performance.

I. INTRODUCTION
Big Data technologies are widely used by business and

research. The most recent works of the NIST Big Data Working
Group report that Big Data adoption now concerns more sectors
than just academics or research; many critical sectors such as
health or finance now take advantage of massively parallelised
data storage and processing [1]. In those sectors, the regulatory
landscape imposes that many requirements are fulfilled without
reserve. HIPAA or Financial regulations impose strict liability
to companies which require as a consequence that both systems
and processed data are adequately protected and can be used as
proof, e.g. in case of legal dispute or forensics investigation [2].
As a reflex, such companies would most likely enforce perimeter
security or choose a solution which is deemed “secure”.
Perimeter security however doesn’t address compliance risks,

nor other growing risks such as insider threats, or information
leakage [2][3][4][5].

Hadoop was however initially not built with Security
concerns in mind [6]; the prime objectives were the generic 3 Vs
properties (Volume, Velocity, Variety) which are today
complemented by other properties (Veracity, Variability,
Value). Controls were only bound to address errors (e.g. data
loss, disk corruption, etc.) but not malicious usage. Recent
research envisage encryption (i.e. data-centric security) as a the
most comprehensive way to embrace security needs in Hadoop
on top of classic network, servers and applications security
without implementing major architecture changes [2]. Privacy
and regulatory compliance indirectly require such data-level
protection.

The remainder of the paper is organised as follows. Section
II describes the core components of Hadoop based Big Data
Infrastructures (HBDI), Section III proposes Security Strategies
and possible solutions, Section IV describes the testbed that was
designed to assess the impact of Security on the HBDI Velocity,
Section V exposes the findings and Section VI provides an
analysis of the results.

II. CORE COMPONENTS OF BIG DATA INFRASTRUCTURE
(BDI)

Fig. 1provides a general view on the Big Data infrastructure
as a part of the Big Data Architecture Framework (BDAF)
defined in the authors’ previous work [7] that includes the
general infrastructure for general data management, typically
cloud based, and Big Data Analytics infrastructure that will
require specialised and high-performance computing clusters.
General BDI services and components include:

• Big Data Management tools
• Registries, indexing/search, semantics, namespaces
• Security infrastructure (access control, policy

enforcement, confidentiality, trust, availability, privacy)
• Collaborative environment (groups management)
• The Federated Access and Delivery Infrastructure

(FADI) as an important component of the general BDI
that interconnects different components of the
cloud/Intercloud based infrastructure combining
dedicated network connectivity provisioning and
federated access control.

Besides the general cloud base infrastructure services
(storage, compute, infrastructure/VM management) the

following specific applications and services are required to
support Big Data and other data centric applications:

• Hadoop based services and tools, streaming analytics,
etc.

• Specialist data analytics tools (events, data mining, etc.)
• Databases/Servers SQL, NoSQL

Fig. 1. General Big Data Infrastructure functional components

A. Security Strategies for Big Data
The relative complexity of the software architecture of a BDI

increases the difficulty of the challenge for implementing end-
to-end security. Confidentiality and integrity requirements are
however increasingly demanded; and one of the key
requirements for improving security is to ensure that it is applied
thoroughly. In the minds of many security experts, security
architectures must still be typically system-centric and one
forgets easily what we have to protect data in the first place:
system-centric security (and equally physical security) are of
course a prerequisite, but the holy grail of security is rather
information-centric, driven by privacy and compliance
constraints.

Encryption is a key element of an adequate security strategy,
but it introduces several obstacles and challenges that are
difficult to overcome: Considering the typical architecture of a
HBDI (see Fig. 2), several approaches can be engineered to
protect either the system, the data, or both. We studied the pros
and cons of four different strategies.

1) Strategy #1: Inter-regions encrypted tunnels and VPCs
A “simplistic” solution consists in reusing the Virtual Private

Cloud (VPC) concept promoted by Amazon Web Services
(AWS) or its competitors: instead of securing down to each
communication channel, encryption only occurs between two
nodes if they are located in different regions. Hadoop
components would therefore live inside “bubbles” which are
interconnected using encrypted tunnelling: typically, the risks of
man-in-the-middle or eavesdropping attacks are reduced.

2) Strategy #2: Non-Hadoop security components
Another interesting option consists in using encryption

mechanisms built-in the operating system [8]. For data in transit,
IPsec (transport layer) is a fair choice: it is standard, available on
all kinds of OS, and often open-source. We could therefore force
all traffic (ingress/egress) to pass through an IPsec tunnel for all
communications. data at rest could be encrypted by the
Operating System (OS).

3) Strategy #3: In-Product security components and
Hadoop “Secure Mode”

As we saw in Strategy #2, we still need to cover the risk of
insider threat to ensure that data is properly compartmented and
that compartments are entirely imperviously sealed. For this
purpose, we propose both AAAA (authentication, authorization,
accounting and auditing) mechanisms [9], encryption of data in
transit, and encryption of data at rest performed in a way so that
encryption is linked to a credentials pair, and not to the machine
(unlike whole disk encryption).

For all RPC traffic, Hadoop implements an SASL
authentication layer which has also data in transit encryption
abilities [10]; RPC/SASL configuration must however be
maintained carefully and regularly during the system’s lifecycle
as compatibility fall-back mechanisms allow a node to
challenge/response and negotiate little or no encryption at all.
Client connectivity would be secured using HTTPS and TLS:
this is similar to all websites security currently used. Here, a
Man-in-the-middle attack would target the root CA, or the
delegates root CAs, since TLS is most often not used for mutual
authentication (i.e. when client and server mutually
authenticate). Such mutual authentication could be however
highly desirable.

Fig. 2. Per protocol encapsulation / encryption add-on

4) Strategy #4: HDFS transparent encryption
As the implementation of server-side encryption in Hadoop

still represents a major challenge, one alternative would consist
in implementing end-to-end encryption. Hadoop already
proposes such feature as part of its own software distribution
[11]. It relies on a Key Management System (KMS) as shown in
Fig. 3. The KMS is the encryption keys custodian; it can
authenticate an account and assign to each CRUD permissions

RPC/SASL - Service to Service
communications
RPC/SASL or http -
client protocol
RPC/SASL - Service to Service
communications

Hadoop - Site B

Slave Node

Hadoop - Site A

Master Node

Slave Node

Job
Tracker

Name
Node

Data
Node

Task
Tracker Data

Node
Task
Tracker

Reduce
Task Reduce

Task

Client

Map
Task

Client
protocol

RPC/SASL -
Datanode protocol
Public
Networks

Legend

Data
Node

Secure Storage

(Create, Read, Update and Delete). HDFS must also offer the
capability to define mandatory encryption zones/containers
where data cannot be stored in the clear. The data stored in
HDFS encrypted zones must also be accessible by processes
(e.g. during the MapReduce phase). The KMS must therefore be
summoned equally by a Client when data is stored or read, and
by the Name Node.

Fig. 3. HDFS transparent encryption

B. Strategies drawbacks
1) Strategy #1 (Inter-regions encrypted tunnels and VPCs)

A machine to machine encryption seems at first a very
attractive solution as its deployment could be almost fully
automated. Such setup however presents several drawbacks:

• Resizing of the cluster could prove to be difficult or
compromise the symmetric cryptographic key used.

• The solution does not mitigate the risk of Insider Threat
at all; once an SSH / VPN access is established, an
‘authorised’ person could still poison data, or destroy it.

2) Strategy #2 (Non-Hadoop security components)
The reliance on solely external security mechanisms is rather

cumbersome to implement, and could also leave many
vulnerabilities open. For instance, the correlation of logs -and
therefore the overall system accountability as requested by
HIPAA- would be far from achieved.

3) Strategy #3 (In-Product security components and
Hadoop “Secure Mode”)

While node to node authentication is highly desirable to
ensure no rogue HBDI component takes part to the cluster, a
number of compensating controls are required to provide
thorough data assurance. Here again, we would lack native
correlation of logs among security components, for instance.

4) Strategy #4 (HDFS transparent encryption)
Such an approach is interesting, as it ensures that:

• Data in transit (between the client and the HDFS
storage) is encrypted;

• Data at rest (in HDFS containers) remains encrypted.

The model is far better than the others; it however creates a
strong availability dependency (and possibly a significant
performance impact) on Key Management System’s (KMS)
availability. Furthermore, a number of vulnerabilities remain
open and require mitigation where possible:

• Hardware access exploits: same as other solutions. The
attacker would however obtain access to encrypted files
on disk.

• Root access: a memory dump during processing would
still allow to reveal data. This is also the case in other
setups and no mitigation could possibly exist (unless
when using anti-tampering hardware).

• Insider threat: someone who would manage to steal an
HDFS account could access the KMS, and the
associated keys and run processes to dump data to
external storage. This cannot be mitigated.

Additional measures are still required:
• SASL protocol is required to protect node-to-node and

user-to-node authentication and accountability.
• The initial data upload would still need to occur over an

HTTPS link.
• Multi-Tenant isolation would require to be strictly

enforced to prevent potentially Denial of Service on
HBDIs’ components [11].

III. EXPERIMENTAL TESTBED
Out of the four strategies studied in theory, only Strategy #4

seems to be realistic. The first three present serious drawbacks –
and could be often subject to serious implementation
limitations– and we have therefore chosen to implement only
Strategy #4. Our experience used tools and platforms available
to non-Experts, and the purpose is to evaluate how encryption
practically impacts performance. For our purpose, we used a
commercially available Big Data offer, and implemented a
reusable testbed (see Fig. 4) on AWS.

Fig. 4. initial architecture for the Testbed using AWS free tier

The testbed is composed of several AWS services: S3
(simple storage service) buckets (AWS’s storage service), an
IAM (Identity and Accountability Management system), and an
EMR (Elastic Map Reduce) cluster of nodes. EMR is the
commercial AWS name for its own Hadoop implementation;
which means that we can either use it the way AWS set it up by
default (e.g. using S3 buckets), or use it as a typical HBDI using

RPC/SASL - Service to Service
communications
RPC/SASL or http -
client protocol
RPC/SASL - Service to Service
communications

Hadoop - Site B

Slave Node

Hadoop - Site A

Master Node

Slave Node

Job
Tracker

Name
Node

Data Node
EZ

(encryption
zone)

Task
Tracker Data Node

EZ
(encryption

zone)

Task
Tracker

Reduce
Task

Reduce
Task

Client

Map
Task

Client
protocol

RPC/SASL -
Datanode protocol
Public
Networks

Legend

Data
Node

Secure Storage

Key Management
System

EZK
Encryption
Zone Keys

DEK
Data

Encryption
Keys

Identity and
Accountability

Management system
Users

Accounts

its core HDFS storage. In EMR, HDFS storage is not persistent,
but this is not required by our tests at this stage. We created 4
different setups on which we could run several times identical
jobs with 2, 4, 8, 16 and ultimately 20 machines (AWS’s
limitation), and produced measurement sets that we compared.

A. Hardware configuration
In order to remain consistent with the aim of the experiment

(an applied testing of encryption impact on performance), we
selected a standard hardware configuration which is proposed by
default EMR/EC2 instances. The hardware configuration of
these instances is as follows:

• 2.6GHz Intel Xeon E5-2670 v2 (Ivy Bridge) Processors
(which include an AES-NI module)

• 2x40GB SSD-based instance storage
• 4 vCPUs (1 CPU, 4 core)
• 15Gb RAM.

B. Data processing preparation
1) Sample Dataset

We selected a dataset of a medium size, already public or
considered public, and available in a format that could not hinder
the production of results. The choice was rapidly set on a
database dump of Wikimedia products:

• the Wiktionary English XML monthly dump (4.3GB,
b2zip format, without images)

• the DBpedia English dump (17GB, b2zip format,
without images).

2) Text Processing using a PIG script launched from the
GRUNT shell

The processing of such datasets therefore indeed qualify as
“Big Data”, since they “cannot be processed in Microsoft
Excel”. A script was required; the choice of PIG (present in all
Hadoop standard installations, without further add-ons) was
made obviously because of its simplicity. The development of
the script (based on several examples available in online
tutorials) produced this final version which was kept simple to
stay away from bottlenecks introduced by code complexity:

lines = LOAD '$INPUT' USING TextLoader
AS (line:chararray);

words = FOREACH lines GENERATE
FLATTEN(TOKENIZE(line)) AS word;

grouped = GROUP words BY word;

wordcount = FOREACH grouped GENERATE
group, COUNT(words);

STORE wordcount INTO
'$OUTPUT/wordcount.txt';

Fig. 5. PIG wordcount script

C. Configuration aspects of the Testbed
1) Step 1: no security testbed

During this phase, the testbed consisted in an EMR
deployment of 1+2 (master+slave) nodes, with a core setup of
Amazon Hadoop 2.6.0 + Hive 1.0.0 + Pig 0.14.0 + Ganglia 3.6.0
(default AWS EMR setup, December 2015). EMR relied on an
initial setup using S3 buckets, AAA in place, no encryption.

2) Step 2: EMRFS server-side encryption
Step 2 is similar to step 1, but storage is EMRFS (i.e.

enhanced and Hadoop-compliant S3 storage) with Server Side
encryption using a key generated in AWS’ KMS and using
AES256 as the default encryption standard.

3) Step 3: HDFS, no encryption
During step 3, S3 buckets were only used as a repository to

copy data to the HDFS storage which is provided with the EC2
(Elastic Compute Cloud, AWS’s name for virtual machines)
instances as part of the EMR configuration. Instead of using
EMR’s web console, we accessed the master node using SSH,
importing the data into the EMR’s HDFS area (which is not
secure at this stage yet) and run the PIG script using a GRUNT
shell.

4) Step 4: HDFS transparent encryption
Step 4 is similar to Step 3. We however use an encrypted

HDFS zone to store both initial data and processing output. The
encrypted zone was setup using HDFS cryptographic abilities.
The KMS is the component provided by Hadoop and is
independent from the AWS’s IAM.

5) IAM and KMS setup
AWS’s IAM (Identity and Access Management) product is

a prerequisite to the setup of the EC2 instances which run the
Hadoop distribution; they also do not link to the Hadoop’s KMS
in any way. They are however required if the chosen storage is
S3 instead of HDFS.

D. Metrics collection and analysis
In order to compare the various Hadoop / EMR setups (non-

secure, client-side encrypted, server-side encrypted), we need to
pre-establish a set of metrics. AWS proposes such metrics
collection in their product line (AWS’s CloudWatch, which isn’t
available by default but can be setup instantly). Other products
are also available, if the instances of the HBDI are self-operated
or if more detailed metrics are required [13]. Since an EMR
cluster is composed of 1/ EC2 instances, 2/ Temporary EC2
storage (temp files and swap), 3/ EMR and 4/ EMRFS (over S3)
storage, we monitored metrics specific to each of these
components:

• EC2 instances: CPUUtilization, NetworkIn,
NetworkOut.

• Temporary EC2 storage (temp files and swap):
DiskReadOps, DiskWriteOps, DiskReadBytes,
DiskWriteBytes

• EMR: ClusterStatus, MapReduceStatus, NodeStatus,
IO.

E. Purpose of an Initial Dry Run
The simplest testbed setup is initially required to establish a

performance baseline which can be later compared to secure
implementations. The lab therefore consisted in a succession of
testbeds which configurations evolved in a similar way so that
they can be later compared:

• 1+2 using S3 storage without encryption
• 1+2 using S3 storage with Server-Side AES256

encryption
• 1+2 using HDFS without encryption

• 1+2 using HDFS with transparent,
AES256/CTR/NoPadding encryption.

• Repeat with 1+4
• Repeat with 1+8
• Repeat with 1+16
• Repeat with 1+19 (maximum of EC2 instances running

is 20 overall).

IV. RESULTS AND EVALUATION

A. Medium-size dataset processing (4,7GB, flat)
Our first objective consisted in the observation of the

performance of the PIG script + the Wiktionary dump altogether
and attempt to identify general, high-level conclusions that we
could later explore further.

1) S3 bucket, no encryption
The initial run -which we qualify as “dry run” since it is not

yet charged by any security mechanism (except basic AAAA,
since it is a service enabled by default on AWS and consorts)-
demonstrated that a roughly 4,7GB dataset can be processed
rather rapidly using only one master and two slave nodes (1+2).
Doubling the amount of slave nodes helped gaining significant
processing time (approx. 50%), but to half the processing
performance, we had to quadruple the 4 slave nodes. Adding a
set of 3 additional nodes to the set of 16 which manages to
process 4,7GB in 3:42 shows only little improvement, roughly
24s. Obviously, the horizontal upgrades tends to a limit which
appears to be set around 3min for the processing of 4,7GB.

slave nodes

1+2 1 + 4 1 + 8 1 + 16 1 + 19

processing
time (s)

00:14:38 00:07:42 00:05:12 00:03:42 00:03:18

Fig. 6. 4,7GB, S3 buckets, no encryption

2) S3 bucket (EMRFS), server-side encryption (SSE)
AES256, managed

Adding Server-Side Encryption (SSE) to S3 automatically
forces EMR to implement the EMRFS “interpret” so Hadoop
can access S3 (with SSE). Considering that Hadoop accesses a
dataset which is not compressed, smaller than the size of the
RAM available, we expect that the impact on performance
should be hard to quantify precisely. Indeed, figures tend to
show almost no difference (or even gains in some cases) of
processing time compared to the use of S3 without encryption.

slave nodes

1 + 2 +
AES256

1 + 4 +
AES256

1 + 8 +
AES256

1 + 16 +
AES256

1 + 19 +
AES256

processing
time (s)

00:14:14 00:07:56 00:05:12 00:03:26 00:03:06

Fig. 7. 4,7GB, S3 buckets (EMRFS), Server-Side encryption

3) S3 bucket - no encryption versus AES256
Overall, no performance impact appears consistently

throughout the various steps of the experiment. For instance, in
a 1+2 configuration, the setup with encryption performed 3%
faster than without. No change was noticed in the 1+4
configuration. We even observe an 8% time gain in the 1+16
configuration, which does not verify our initial hypothesis that
encryption would diminish performance by 4-10%, as supported

by professional presentations and literature. Using such figures,
we can deduct that:

• The encryption processing payload is also distributed
across the nodes.

• The more slave nodes are used, the less an important
dataset is loaded in memory, and the faster encryption /
decryption will occur.

• We can suspect that encryption somehow forces the
caching of the entire subset of data on each node,
increasing the speed of processing.

• The m3.xlarge EC2 instances use 2.6GHz Intel Xeon
E5-2670 v2 which implement the AES-NI (new
instructions set)

• Each EC2 instance provides 15Gb of RAM and SSD
drives which reportedly accelerate Hadoop processing
by around 31% (Cloudera, 2015).

Considering these hypotheses, we can observe that SSE’s
impact on performance is not really quantifiable for a dataset of
this size. In the table below, a negative performance impact
means a gain of processing time after encryption is enabled.

slave nodes # 1+2 1 + 4 1 + 8 1 + 16 1 + 19

Encryption
Performance

Impact

-3% 3% 0% -8% -6%

Fig. 8. 4,7GB, S3 buckets (EMRFS), no encryption versus AES256 Server-
Side encryption

4) HDFS, no encryption
Since we used an S3 bucket for our initial dry run, we used

it as a baseline to compare the course of events when testing
other mechanisms, including the native HDFS which is provided
with Hadoop. HDFS is notably not a great performer, but has
proven to be extremely reliable in ensuring data consistency and
integrity thanks to its replication mechanisms, and the integrity
checks it performs continuously. Overall, HDFS still provides a
valuable service, despite the complaints we could read about its
overall performance. Furthermore, HDFS was until Hadoop
v2.6.0 unable to provide any security function to data. Since,
HDFS transparent encryption was introduced and HDFS is now
able to play a role in the security of the information it contains.

To start with, we have uploaded our dataset onto the Hadoop
Master Node from an SSH shell, using the grunt shell’s cp
command. For the 4,7GB dataset, the cp command took a little
below 1min to complete. Once aboard, the dataset was ready to
be processed; we used the same script as previously; we however
launch each line of the script using the grunt shell.

Performance metrics show that HDFS performs much better
than S3 when only few slave nodes are used (up to 8). Above 8
slave nodes, HDFS seems to provide no further advantage and
tends to a lower processing time limit of 4min, instead of 3min
for S3.

slave nodes

1+2 1 + 4 1 + 8 1 + 16 1 + 19

processing
time (s)

00:10:47 00:06:03 00:04:33 00:04:13 00:04:17

Fig. 9. 4,7GB, HDFS data folder, no encryption

5) HDFS, server-side encryption (SSE) AES256
As shown in Fig. 3 (strategy #4), HDFS uses a native KMS

(Key Management Server) to implement on-the-fly data
encryption. We first implement an Encryption Zone (EZ), where
HDFS forces each file to be encrypted [14]:

• Files are encrypted/decrypted using DEKs (Data
Encryption Keys).

• DEKs are protected by being encrypted by the EZ key.
The result is an EDEK.

• Users / applications may request a file to be decrypted:
the KMS will serve the request only if the user is
authorised.

As a result, users can be created, modified, deleted, and new
users created; if one account is granted the right to access a file,
it is actually granted a right to use an EDEK. This means that if
a file is being transferred from a node to another, it will be under
its encrypted form. Should SASL not be used between nodes, an
MITM would fail to read the data itself. Such complexity
worried us that performance impact could indeed be significant.
The results however once again contradict the initial hypothesis.

slave nodes

1 + 2 +
AES256
CTR

1 + 4 +
AES256
CTR

1 + 8 +
AES256
CTR

1 + 16 +
AES256
CTR

1 + 19 +
AES256
CTR

processing
time (s)

00:10:27 00:06:12 00:04:36 00:04:36 00:04:11

Fig. 10. 4,7GB, HDFS transparent encryption, Encrypted Zone dataE folder

6) HDFS - no encryption versus AES256
We can compare HDFS’s performance with transparent

encryption versus without encryption. Except a notable
performance impact (8%) using the 1+16 configuration, other
figures tend to show rather stable figures, like when using S3.

slave nodes # 1+2 1 + 4 1 + 8 1 + 16 1 + 19

Performance
Impact

-3% 2% 1% 8% -2%

Fig. 11. 4,7GB, HDFS, no encryption versus AES256 CTR transparent
encryption

B. Larger-size dataset processing (17GB, compressed)
Previous experiments reveal that for “small” Big Data (i.e.

5GB), encryption has a very limited impact on performance. In
some cases, it even forces caching which sends the entire file
encrypted to RAM, where decryption performance is really high.
We therefore wanted to use a file which “doesn’t fit” in RAM,
i.e. a 17GB, compressed text file, to increase the difficulty and
observe whether encryption would be a strong challenge to the
MapReduce processing performance.

To achieve this goal, we a) restored a snapshot to an EBS
attached volume, b) mounted the EBS volume to the EMR
Master Node, c) copied the content to HDFS storage (normal
zone, and encrypted zone) and finally d) launched the same
series of processes than previously, with the same horizontal
scaling.

1) HDFS, no encryption
The size increase, combined with the use of b2zip

compressed dataset is supposed to impact performance in an
extremely heavy fashion, and allow us to make the part of

encryption in the overall processing payload. The initial run
shows indeed that for the size increase, the processing time
increase is significant: in a 1+2 configuration, the 17GB
compressed takes around 920% more time to process than the
5GB uncompressed. A 1+4 configuration (actually doubling the
computing power) shows a halved processing time compared to
1+2, and 1+8 seems to tend already to the limit; 1+16 and 1+19
both take around 20min to complete the work.

slave nodes # 1 + 8 1 + 16 1 + 19

elapsed processing
time (s)

00:28:09 00:25:29 00:25:19

Fig. 12. 17GB b2zipped, HDFS, no encryption

2) HDFS, transparent encryption (AES256 CTR)
The same tests using transparent encryption, i.e. loading the

data in the EZ (encryption zone) which forces the processing to
start after decryption has occurred and before encryption occurs
again. We saw previously that encryption had little impact on
performance on a dataset smaller than the amount of RAM
available; with this compressed dataset, 17GB could mean that
the overall size (uncompressed) would reach around 50GB
(since bzip2 has a compression rate of 2,92. In all cases, the total
data size is higher than the RAM on each EC2 instance, which
may require optimisation and which explains the very poor
performance figures in 1+2 and 1+4 configurations.

Unfortunately, we could not manage to complete the
processing of the encrypted dataset in the 1+2 and 1+4
configurations: processing typically froze straight after 16%
completion at each attempt.

slave nodes # 1 + 8 + AES256
CTR

1 + 16 +
AES256 CTR

1 + 19 +
AES256 CTR

elapsed
processing

time (s)

00:27:39 00:20:43 00:19:53

Fig. 13. 17GB b2zipped, HDFS, AES CTR

3) HDFS - no encryption versus AES256 CTR
On 1+8 and above setups, we can observe that encryption

actually benefits the processing time by significant means: 23%
gain in a 1+16 configuration, 27% gain in a 1+19 configuration.

slave nodes # 1 + 8 1 + 16 1 + 19

Performance
Impact

-2% -23% -27%

Fig. 14. 17GB b2zipped, HDFS, AES CTR

V. ANALYSIS

A. Impact of slave nodes amount on CPU usage
A deeper analysis reveals a number of characteristics of the

multiplication of nodes on processing time and on resources
overall. For instance, CPU usage in a 1+2 configuration is not
optimal: one node remains at 100% while the other stops being
used at around half of the processing.

B. Impact of slave nodes amount on Disk usage
Overall, we can observe indeed a change of IO behaviour

when the amount of nodes changes:

• 1+2 configuration requires more frequent IO reads /
writes, which can be explained by the limited amount of
RAM available in this setup. Caching of smaller data
parts, more frequent is therefore necessary.

• 1+4 configuration shows indeed less frequent IO
operations. Their amount is however similar, and peak
at a similar level as the 1+2 configuration.

C. Impact of slave nodes amount on Network usage
The 1+4 setup is more network intensive than the 1+2: most

of the processing organisation seems to require access to data
which is not located physically on a disk attached to the node
where it is supposed to be processed. Instead of intense Disk IO
in the 1+2 configuration, we therefore observe intense network
IO in the 1+4 configuration. With higher amount of nodes in the
cluster, we can observe an initial load on the network –most
likely due to HDFS replication– which becomes less and less
noticeable. Possibly this effect could be further attenuated if
HDFS replication occurs in a more thorough manner.

D. Impact of encryption: the 1+19 case
The 1+19 configuration is in our opinion the most interesting

to analyse since it shows wholly how CPUs, Memory, and Disk
IOs are effectively affected by the enabling of AES256 CTR.

1) Observation 1
When encryption is enabled, far more nodes reach 100%

CPU usage over a part, or the entire period of processing.
Without encryption, several nodes just end processing much
before others. Encryption shows therefore a significant impact
on CPU usage, which suggests that larger datasets processing
may require either smart processing approaches (using data parts
during decryption phases), or a horizontal upgrade of the cluster
(i.e. more active nodes).

2) Observation 2
Our second observation relates to Network and Disk IO: we

can see in both cases Read or Write spikes: we deduct that these
are the moments where large parts of the data are transferred to
RAM, and later when results are written back to HDFS. HDFS
in such case could mean either a Disk Write and/or a Network
Write, depending on which node is the data (source, and output)
needs to be located, and whether it is replicated.

Fig. 15. Network Out (Bytes) behavior during 1+19 AES CTR processing (job

start: 20h10)

Encryption is hardly noticeable on the measurements
obtained (see Fig. 15).

• Disk reads spikes at 20.000.000 Bytes per 5min
(exception made of the spike at around 82.000.000
Bytes per 5min on one node, probably due to data
replication)

• Disk writes stagnate at around a median value of
150.000.000 Bytes, with spikes at 400.000.000 -
600.000.000 Bytes per 5min at the end of the processing
(typically when results are written from RAM to
persistent storage).

• Both Network reads and writes behaviour also seem
unchanged by the use of encryption, and spike at around
100.000.000 - 120.000.000 Bytes per 5min.

If we then rule out the impact on nodes IOs, we are solely
left with a noticeable impact on the nodes’ use of CPU time,
which confirms the literature description of how transparent
encryption operates. Ultimately, multiplying the amount of
nodes will help getting each data part fully loaded, decrypted,
processed, and encrypted in RAM.

3) Observation 3
The first test using HDFS show a significant performance

gain compared to the use of S3 buckets, around 3min gain in the
1+2 configuration. One possible explanation lies in the fact that
the “HDFS volume” is “attached” to the EC2 instances, and
directly accessible without having to suffer from network
latency.

4) Observation 4
The performance on smaller datasets is not affected at all by

encryption, in practice. This could be explained by the fact that
encryption and decryption happens fully in RAM. This indeed
implies that higher performance can be reached by adding more
RAM to the cluster. During our experiment, the total amount of
RAM at our disposal exceeded 218GB on the 1+19 nodes setup,
which is much higher that the amount of data we wanted to
process.

5) Observation 5
Encryption very seldom impacts the file size, which means

that there is potentially no data overhead, and therefore no (or
minimal) impact on Disks IO. Impact on network performance
(set aside the use of RPC SASL) is also minimal for the very
same reasons, and should remain similar to the performance
levels of configurations without encryption used.

6) Observation 6
We can observe that the CPU resource is the most impacted

by encryption, compared to other components. This verifies and
supports the strategy of developing crypto-instructions within
the CPU core. The impact of encryption (AES CTR) on newer
CPUs could however remain significant, and CPU is the
bottleneck to encryption, especially when random data searches
are performed on the Big Data repository.

VI. CONCLUSIONS AND FURTHER RESEARCH
Encryption and decryption of course still represent a cost and

impact performance; as popular belief rightly mentions, we
observe a significant level of overhead due to encryption; it is

however mitigated by hardware configuration, server software,
ratio of dynamic versus static content, client distance to server,
typical session length, and the caching strategy used both at
server level or client level [15]. Real-life measurements gains
presented in this research reveal that encryption forces the
caching of larger sets of data; such decryption and encryption of
larger datasets actually improve artificially the overall job
performance. They also confirm that specific encryption modes
(i.e. CTR encryption or decryption in forward mode) can indeed
be performed in parallel [16]. Like any other processing payload,
encryption is therefore massively distributed among nodes
during processing.

In our tests, we have considered exclusively a linear-type
(e.g. sequential) data processing. It occurs without “noticeable”
performance impact, due to smart caching strategies and CPU-
based encryption instructions sets. Random data access (e.g.
using Hive) could however present a more significant challenge
to performance. Future research should therefore focus on
developing homomorphic encryption. It would greatly support
the use of encrypted indexes, and limit the need for storing in
RAM the data in the clear, leaving it potentially vulnerable to
remote execution attacks.

Performance is however not the only potential impact of
encryption: Key loss and Recovery / Proof of Retrievability
(PoR) is a new control that needs to be considered as encryption
at rest (or transparent encryption) is implemented at all. A crash
of one KMS and the incapability of recovering encryption keys
could be a disaster that leads to the loss of significant amounts
of data. Likewise, keys theft remains a plausible attack scenario,
and the protection of the KMS is of paramount importance, as
well as the assurance of its high availability. This component
could well be a more significant bottleneck than all the others.

Enabling encryption also requires that Centralised
Authorisation is implemented together with Single Sign-on
across all components: currently, authorisations mechanisms are
per-component and unable for some to interact at all. There are
therefore several authorisation steps required to access a single
dataset.

Likewise, logging requires to be implemented consistently in
all Hadoop components, and it requires to be protected
adequately. The encryption of the logs produced by the various
components (Hadoop core, HDFS) wasn’t considered during
this research. Many other Hadoop components also require
protection and solutions are being researched (Hadoop core,
HDFS, MapReduce, ZooKeeper, HBase, Hive, PIG, Oozie,
Mahout, Flume, Sqoop) in Intel’s driven ‘Project Rhino’
(GitHub, 2015).

Encryption no longer looks like an obstacle to performance
and system usability. While precautions should always be taken
(Key server high availability, Proof of Recovery), encryption
can be seriously considered in any Big Data project.

We recommend that encryption zones (EZs) are made
available by default in all HDFS distributions and that EZs are
the default path used when uploading data. Where data needs to
be randomly accessed, or where measured performance shows
significant slowdown, one could choose to use the “unsecured”
HDFS container instead.

REFERENCES
[1] NIST Big Data Public Working Group Security and Privacy Subgroup

(2015) NIST Big Data Interoperability Framework: Volume 4, Security
and Privacy. National Institute of Standards and Technology. doi:
10.6028/NIST.SP.1500-4.

[2] Fhom, H. S. (2015) ‘Big Data: Opportunities and Privacy Challenges’,
arXiv.org, p. 823.

[3] Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E. and Abramov, J. (2011)
Security Issues in NoSQL Databases, 2011 IEEE 10th International
Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom). IEEE, pp. 541–547. doi:
10.1109/TrustCom.2011.70.

[4] Quan, Q., Tian-Hong, W., Rui, Z. and Ming-jun, X. (2013) ‘A model of
cloud data secure storage based on HDFS’. IEEE, pp. 173–178. doi:
10.1109/ICIS.2013.6607836.

[5] Yin, J. and Zhao, D. (2015) ‘Data confidentiality challenges in big data
applications’. IEEE, pp. 2886–2888. doi:
10.1109/BigData.2015.7364111.

[6] Lafuente, G. (2015) ‘The big data security challenge’, Network Security,
2015(1), pp. 12–14. doi: 10.1016/S1353-4858(15)70009-7.

[7] Demchenko, Yuri, Peter Membrey, Cees de Laat, Defining Architecture
Components of the Big Data Ecosystem. Second International
Symposium on Big Data and Data Analytics in Collaboration (BDDAC
2014). Part of The 2014 Int. Conf. on Collaboration Technologies and
Systems (CTS 2014), May 19-23, 2014, Minneapolis, USA.

[8] Cohen, J. and Acharya, S. (2013) ‘Towards a Trusted Hadoop Storage
Platform: Design Considerations of an AES Based Encryption Scheme
with TPM Rooted Key Protections’. IEEE, pp. 444–451. doi:
10.1109/UIC-ATC.2013.57.

[9] Rong, C., Quan, Z. and Chakravorty, A. (2013) ‘On Access Control
Schemes for Hadoop Data Storage’. IEEE, pp. 641–645. doi:
10.1109/CLOUDCOM-ASIA.2013.82.

[10] Spivey, B. and Echeverria, J. in Hadoop security. Sebastopol, CA:
O'Reilly Media, 2015

[11] Lakhe, B. in Practical Hadoop Security, 1st edition. Apress, 2014
[12] Huang, J., Nicol, D. M. and Campbell, R. H. (2014) ‘Denial-of-Service

Threat to Hadoop/YARN Clusters with Multi-tenancy’. IEEE, pp. 48–55.
doi: 10.1109/BigData.Congress.2014.17.

[13] Rabl, T., Sadoghi, M., Jacobsen, H.-A., Gómez-Villamor, S., Muntés-
Mulero, V. and Mankowskii, S. (2012) ‘Solving Big Data Challenges for
Enterprise Application Performance Management’, arXiv.org.

[14] Lamb, C. (2015). Overview of HDFS Transparent Encryption. online
Cloudera, Inc. Available at: http://www.slideshare.net/cloudera/hdfs-
encryption Accessed 16 Jan. 2016.

[15] Desai, S., Park, Y., Gao, J., Chang, S.-Y. and Song, C. (2015) ‘Improving
Encryption Performance Using MapReduce’. IEEE, pp. 1350–1355. doi:
10.1109/HPCC-CSS-ICESS.2015.206.

[16] Dworkin, M. J. (2001) Recommendation for block cipher modes of
operation :. 0 edn. Gaithersburg, MD: National Institute of Standards and
Technology. doi: 10.6028/NIST.SP.800-38a.

