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Abstract— Encryption is often viewed as a major drawback 

which hinders the performance of processing systems. This 
perception is not wrong; encrypted storage, memory and 
communications usually perform much slower than systems which 
process data in the clear. Big Data applications is no exception to 
the rule: it was designed with Volume and Velocity requirements 
in mind, and security (i.e. encryption) was initially not considered; 
perimeter security was deemed sufficient, and Big Data systems 
were confined to back-end operations. Considering the recent 
developments in the field (AES-NI processors, Key Management 
Servers, homomorphic encryption), the encryption vs 
performance paradigm needs to be actually measured to re-
evaluate preconceived reservation. 

This research found that encryption is no longer an obstacle to 
efficient and fast Big Data processing, thanks to massive 
processing parallelisation (which distributes also the encryption 
payload), new CPU technologies which allow encryption 
instructions to perform much faster, the use of SSD storage, and 
finally the clever data-centric use of encryption in HDFS. The 
paper provides analysis of four strategies in using data encryption 
in Hadoop based Big Data applications, which have been tested on 
the testbed built on Amazon Web Services (AWS) platform using 
advanced AWS monitoring data. Tests were performed on 
datasets of relatively modest size (about 5-20 Gigabytes), and 
performance was measured as all data could fit in each node’s 
RAM. On larger datasets (e.g. of Terabytes scale), data 
partitioning may be required to obtain similar results. 

Index Terms— Big Data Infrastructure, Big Data Security, Data 
Encryption, Hadoop, Big Data Applications Performance.  

I. INTRODUCTION 
Big Data technologies are widely used by business and 

research. The most recent works of the NIST Big Data Working 
Group report that Big Data adoption now concerns more sectors 
than just academics or research; many critical sectors such as 
health or finance now take advantage of massively parallelised 
data storage and processing [1]. In those sectors, the regulatory 
landscape imposes that many requirements are fulfilled without 
reserve. HIPAA or Financial regulations impose strict liability 
to companies which require as a consequence that both systems 
and processed data are adequately protected and can be used as 
proof, e.g. in case of legal dispute or forensics investigation [2]. 
As a reflex, such companies would most likely enforce perimeter 
security or choose a solution which is deemed “secure”. 
Perimeter security however doesn’t address compliance risks, 

nor other growing risks such as insider threats, or information 
leakage [2][3][4][5]. 

Hadoop was however initially not built with Security 
concerns in mind [6]; the prime objectives were the generic 3 Vs 
properties (Volume, Velocity, Variety) which are today 
complemented by other properties (Veracity, Variability, 
Value). Controls were only bound to address errors (e.g. data 
loss, disk corruption, etc.) but not malicious usage. Recent 
research envisage encryption (i.e. data-centric security) as a the 
most comprehensive way to embrace security needs in Hadoop 
on top of classic network, servers and applications security 
without implementing major architecture changes [2]. Privacy 
and regulatory compliance indirectly require such data-level 
protection. 

The remainder of the paper is organised as follows. Section 
II describes the core components of Hadoop based Big Data 
Infrastructures (HBDI), Section III proposes Security Strategies 
and possible solutions, Section IV describes the testbed that was 
designed to assess the impact of Security on the HBDI Velocity, 
Section V exposes the findings and Section VI provides an 
analysis of the results. 

II. CORE COMPONENTS OF BIG DATA INFRASTRUCTURE 
(BDI) 

Fig. 1provides a general view on the Big Data infrastructure 
as a part of the Big Data Architecture Framework (BDAF) 
defined in the authors’ previous work [7] that includes the 
general infrastructure for general data management, typically 
cloud based, and Big Data Analytics infrastructure that will 
require specialised and high-performance computing clusters. 
General BDI services and components include: 

• Big Data Management tools 
• Registries, indexing/search, semantics, namespaces 
• Security infrastructure (access control, policy 

enforcement, confidentiality, trust, availability, privacy) 
• Collaborative environment (groups management) 
• The Federated Access and Delivery Infrastructure 

(FADI) as an important component of the general BDI 
that interconnects different components of the 
cloud/Intercloud based infrastructure combining 
dedicated network connectivity provisioning and 
federated access control. 

Besides the general cloud base infrastructure services 
(storage, compute, infrastructure/VM management) the 



following specific applications and services are required to 
support Big Data and other data centric applications: 

• Hadoop based services and tools, streaming analytics, 
etc. 

• Specialist data analytics tools (events, data mining, etc.) 
• Databases/Servers SQL, NoSQL 

 
Fig. 1. General Big Data Infrastructure functional components 

A. Security Strategies for Big Data 
The relative complexity of the software architecture of a BDI 

increases the difficulty of the challenge for implementing end-
to-end security. Confidentiality and integrity requirements are 
however increasingly demanded; and one of the key 
requirements for improving security is to ensure that it is applied 
thoroughly. In the minds of many security experts, security 
architectures must still be typically system-centric and one 
forgets easily what we have to protect data in the first place: 
system-centric security (and equally physical security) are of 
course a prerequisite, but the holy grail of security is rather 
information-centric, driven by privacy and compliance 
constraints. 

Encryption is a key element of an adequate security strategy, 
but it introduces several obstacles and challenges that are 
difficult to overcome: Considering the typical architecture of a 
HBDI (see Fig. 2), several approaches can be engineered to 
protect either the system, the data, or both. We studied the pros 
and cons of four different strategies. 

1) Strategy #1: Inter-regions encrypted tunnels and VPCs 
A “simplistic” solution consists in reusing the Virtual Private 

Cloud (VPC) concept promoted by Amazon Web Services 
(AWS) or its competitors: instead of securing down to each 
communication channel, encryption only occurs between two 
nodes if they are located in different regions. Hadoop 
components would therefore live inside “bubbles” which are 
interconnected using encrypted tunnelling: typically, the risks of 
man-in-the-middle or eavesdropping attacks are reduced. 

2) Strategy #2: Non-Hadoop security components 
Another interesting option consists in using encryption 

mechanisms built-in the operating system [8]. For data in transit, 
IPsec (transport layer) is a fair choice: it is standard, available on 
all kinds of OS, and often open-source. We could therefore force 
all traffic (ingress/egress) to pass through an IPsec tunnel for all 
communications. data at rest could be encrypted by the 
Operating System (OS). 

3) Strategy #3: In-Product security components and 
Hadoop “Secure Mode” 

As we saw in Strategy #2, we still need to cover the risk of 
insider threat to ensure that data is properly compartmented and 
that compartments are entirely imperviously sealed. For this 
purpose, we propose both AAAA (authentication, authorization, 
accounting and auditing) mechanisms [9], encryption of data in 
transit, and encryption of data at rest performed in a way so that 
encryption is linked to a credentials pair, and not to the machine 
(unlike whole disk encryption). 

For all RPC traffic, Hadoop implements an SASL 
authentication layer which has also data in transit encryption 
abilities [10]; RPC/SASL configuration must however be 
maintained carefully and regularly during the system’s lifecycle 
as compatibility fall-back mechanisms allow a node to 
challenge/response and negotiate little or no encryption at all. 
Client connectivity would be secured using HTTPS and TLS: 
this is similar to all websites security currently used. Here, a 
Man-in-the-middle attack would target the root CA, or the 
delegates root CAs, since TLS is most often not used for mutual 
authentication (i.e. when client and server mutually 
authenticate). Such mutual authentication could be however 
highly desirable. 

 
Fig. 2. Per protocol encapsulation / encryption add-on 

4) Strategy #4: HDFS transparent encryption 
As the implementation of server-side encryption in Hadoop 

still represents a major challenge, one alternative would consist 
in implementing end-to-end encryption. Hadoop already 
proposes such feature as part of its own software distribution 
[11]. It relies on a Key Management System (KMS) as shown in 
Fig. 3. The KMS is the encryption keys custodian; it can 
authenticate an account and assign to each CRUD permissions 
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(Create, Read, Update and Delete). HDFS must also offer the 
capability to define mandatory encryption zones/containers 
where data cannot be stored in the clear. The data stored in 
HDFS encrypted zones must also be accessible by processes 
(e.g. during the MapReduce phase). The KMS must therefore be 
summoned equally by a Client when data is stored or read, and 
by the Name Node. 

 
Fig. 3. HDFS transparent encryption 

B. Strategies drawbacks 
1) Strategy #1 (Inter-regions encrypted tunnels and VPCs) 

A machine to machine encryption seems at first a very 
attractive solution as its deployment could be almost fully 
automated. Such setup however presents several drawbacks:  

• Resizing of the cluster could prove to be difficult or 
compromise the symmetric cryptographic key used. 

• The solution does not mitigate the risk of Insider Threat 
at all; once an SSH / VPN access is established, an 
‘authorised’ person could still poison data, or destroy it. 

2) Strategy #2 (Non-Hadoop security components) 
The reliance on solely external security mechanisms is rather 

cumbersome to implement, and could also leave many 
vulnerabilities open. For instance, the correlation of logs -and 
therefore the overall system accountability as requested by 
HIPAA- would be far from achieved. 

3) Strategy #3 (In-Product security components and 
Hadoop “Secure Mode”) 

While node to node authentication is highly desirable to 
ensure no rogue HBDI component takes part to the cluster, a 
number of compensating controls are required to provide 
thorough data assurance. Here again, we would lack native 
correlation of logs among security components, for instance. 

4) Strategy #4 (HDFS transparent encryption) 
Such an approach is interesting, as it ensures that: 

• Data in transit (between the client and the HDFS 
storage) is encrypted; 

• Data at rest (in HDFS containers) remains encrypted. 

The model is far better than the others; it however creates a 
strong availability dependency (and possibly a significant 
performance impact) on Key Management System’s (KMS) 
availability. Furthermore, a number of vulnerabilities remain 
open and require mitigation where possible: 

• Hardware access exploits: same as other solutions. The 
attacker would however obtain access to encrypted files 
on disk. 

• Root access: a memory dump during processing would 
still allow to reveal data. This is also the case in other 
setups and no mitigation could possibly exist (unless 
when using anti-tampering hardware).  

• Insider threat: someone who would manage to steal an 
HDFS account could access the KMS, and the 
associated keys and run processes to dump data to 
external storage. This cannot be mitigated. 

Additional measures are still required: 
• SASL protocol is required to protect node-to-node and 

user-to-node authentication and accountability.  
• The initial data upload would still need to occur over an 

HTTPS link. 
• Multi-Tenant isolation would require to be strictly 

enforced to prevent potentially Denial of Service on 
HBDIs’ components [11]. 

III. EXPERIMENTAL TESTBED 
Out of the four strategies studied in theory, only Strategy #4 

seems to be realistic. The first three present serious drawbacks –
and could be often subject to serious implementation 
limitations– and we have therefore chosen to implement only 
Strategy #4. Our experience used tools and platforms available 
to non-Experts, and the purpose is to evaluate how encryption 
practically impacts performance. For our purpose, we used a 
commercially available Big Data offer, and implemented a 
reusable testbed (see Fig. 4) on AWS.  

 
Fig. 4. initial architecture for the Testbed using AWS free tier 

The testbed is composed of several AWS services: S3 
(simple storage service) buckets (AWS’s storage service), an 
IAM (Identity and Accountability Management system), and an 
EMR (Elastic Map Reduce) cluster of nodes. EMR is the 
commercial AWS name for its own Hadoop implementation; 
which means that we can either use it the way AWS set it up by 
default (e.g. using S3 buckets), or use it as a typical HBDI using 
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its core HDFS storage. In EMR, HDFS storage is not persistent, 
but this is not required by our tests at this stage. We created 4 
different setups on which we could run several times identical 
jobs with 2, 4, 8, 16 and ultimately 20 machines (AWS’s 
limitation), and produced measurement sets that we compared. 

A. Hardware configuration 
In order to remain consistent with the aim of the experiment 

(an applied testing of encryption impact on performance), we 
selected a standard hardware configuration which is proposed by 
default EMR/EC2 instances. The hardware configuration of 
these instances is as follows: 

• 2.6GHz Intel Xeon E5-2670 v2 (Ivy Bridge) Processors 
(which include an AES-NI module) 

• 2x40GB SSD-based instance storage 
• 4 vCPUs (1 CPU, 4 core) 
• 15Gb RAM. 

B. Data processing preparation 
1) Sample Dataset 

We selected a dataset of a medium size, already public or 
considered public, and available in a format that could not hinder 
the production of results. The choice was rapidly set on a 
database dump of Wikimedia products: 

• the Wiktionary English XML monthly dump (4.3GB, 
b2zip format, without images) 

• the DBpedia English dump (17GB, b2zip format, 
without images). 

2) Text Processing using a PIG script launched from the 
GRUNT shell 

The processing of such datasets therefore indeed qualify as 
“Big Data”, since they “cannot be processed in Microsoft 
Excel”. A script was required; the choice of PIG (present in all 
Hadoop standard installations, without further add-ons) was 
made obviously because of its simplicity. The development of 
the script (based on several examples available in online 
tutorials) produced this final version which was kept simple to 
stay away from bottlenecks introduced by code complexity: 

lines = LOAD '$INPUT' USING TextLoader 
AS (line:chararray); 

words = FOREACH lines GENERATE 
FLATTEN(TOKENIZE(line)) AS word; 

grouped = GROUP words BY word; 

wordcount = FOREACH grouped GENERATE 
group, COUNT(words); 

STORE wordcount INTO 
'$OUTPUT/wordcount.txt'; 

Fig. 5. PIG wordcount script 

C. Configuration aspects of the Testbed 
1) Step 1: no security testbed 

During this phase, the testbed consisted in an EMR 
deployment of 1+2 (master+slave) nodes, with a core setup of 
Amazon Hadoop 2.6.0 + Hive 1.0.0 + Pig 0.14.0 + Ganglia 3.6.0 
(default AWS EMR setup, December 2015). EMR relied on an 
initial setup using S3 buckets, AAA in place, no encryption. 

2) Step 2: EMRFS server-side encryption 
Step 2 is similar to step 1, but storage is EMRFS (i.e. 

enhanced and Hadoop-compliant S3 storage) with Server Side 
encryption using a key generated in AWS’ KMS and using 
AES256 as the default encryption standard. 

3) Step 3: HDFS, no encryption 
During step 3, S3 buckets were only used as a repository to 

copy data to the HDFS storage which is provided with the EC2 
(Elastic Compute Cloud, AWS’s name for virtual machines) 
instances as part of the EMR configuration. Instead of using 
EMR’s web console, we accessed the master node using SSH, 
importing the data into the EMR’s HDFS area (which is not 
secure at this stage yet) and run the PIG script using a GRUNT 
shell. 

4) Step 4: HDFS transparent encryption 
Step 4 is similar to Step 3. We however use an encrypted 

HDFS zone to store both initial data and processing output. The 
encrypted zone was setup using HDFS cryptographic abilities. 
The KMS is the component provided by Hadoop and is 
independent from the AWS’s IAM. 

5) IAM and KMS setup 
AWS’s IAM (Identity and Access Management) product is 

a prerequisite to the setup of the EC2 instances which run the 
Hadoop distribution; they also do not link to the Hadoop’s KMS 
in any way. They are however required if the chosen storage is 
S3 instead of HDFS.  

D. Metrics collection and analysis 
In order to compare the various Hadoop / EMR setups (non-

secure, client-side encrypted, server-side encrypted), we need to 
pre-establish a set of metrics. AWS proposes such metrics 
collection in their product line (AWS’s CloudWatch, which isn’t 
available by default but can be setup instantly). Other products 
are also available, if the instances of the HBDI are self-operated 
or if more detailed metrics are required [13]. Since an EMR 
cluster is composed of 1/ EC2 instances, 2/ Temporary EC2 
storage (temp files and swap), 3/ EMR and 4/ EMRFS (over S3) 
storage, we monitored metrics specific to each of these 
components: 

• EC2 instances: CPUUtilization, NetworkIn, 
NetworkOut. 

• Temporary EC2 storage (temp files and swap): 
DiskReadOps, DiskWriteOps, DiskReadBytes, 
DiskWriteBytes 

• EMR: ClusterStatus, MapReduceStatus, NodeStatus, 
IO. 

E. Purpose of an Initial Dry Run 
The simplest testbed setup is initially required to establish a 

performance baseline which can be later compared to secure 
implementations. The lab therefore consisted in a succession of 
testbeds which configurations evolved in a similar way so that 
they can be later compared: 

• 1+2 using S3 storage without encryption 
• 1+2 using S3 storage with Server-Side AES256 

encryption 
• 1+2 using HDFS without encryption 



• 1+2 using HDFS with transparent, 
AES256/CTR/NoPadding encryption. 

• Repeat with 1+4 
• Repeat with 1+8 
• Repeat with 1+16 
• Repeat with 1+19 (maximum of EC2 instances running 

is 20 overall). 

IV. RESULTS AND EVALUATION 

A. Medium-size dataset processing (4,7GB, flat) 
Our first objective consisted in the observation of the 

performance of the PIG script + the Wiktionary dump altogether 
and attempt to identify general, high-level conclusions that we 
could later explore further. 

1) S3 bucket, no encryption 
The initial run -which we qualify as “dry run” since it is not 

yet charged by any security mechanism (except basic AAAA, 
since it is a service enabled by default on AWS and consorts)- 
demonstrated that a roughly 4,7GB dataset can be processed 
rather rapidly using only one master and two slave nodes (1+2). 
Doubling the amount of slave nodes helped gaining significant 
processing time (approx. 50%), but to half the processing 
performance, we had to quadruple the 4 slave nodes. Adding a 
set of 3 additional nodes to the set of 16 which manages to 
process 4,7GB in 3:42 shows only little improvement, roughly 
24s. Obviously, the horizontal upgrades tends to a limit which 
appears to be set around 3min for the processing of 4,7GB. 

slave nodes 
# 

1+2 1 + 4 1 + 8 1 + 16 1 + 19 

processing 
time (s) 

00:14:38 00:07:42 00:05:12 00:03:42 00:03:18 

Fig. 6. 4,7GB, S3 buckets, no encryption 

2) S3 bucket (EMRFS), server-side encryption (SSE) 
AES256, managed 

Adding Server-Side Encryption (SSE) to S3 automatically 
forces EMR to implement the EMRFS “interpret” so Hadoop 
can access S3 (with SSE). Considering that Hadoop accesses a 
dataset which is not compressed, smaller than the size of the 
RAM available, we expect that the impact on performance 
should be hard to quantify precisely. Indeed, figures tend to 
show almost no difference (or even gains in some cases) of 
processing time compared to the use of S3 without encryption. 

slave nodes 
# 

1 + 2 + 
AES256 

1 + 4 + 
AES256 

1 + 8 + 
AES256 

1 + 16 + 
AES256 

1 + 19 + 
AES256 

processing 
time (s) 

00:14:14 00:07:56 00:05:12 00:03:26 00:03:06 

Fig. 7. 4,7GB, S3 buckets (EMRFS), Server-Side encryption 

3) S3 bucket - no encryption versus AES256 
Overall, no performance impact appears consistently 

throughout the various steps of the experiment. For instance, in 
a 1+2 configuration, the setup with encryption performed 3% 
faster than without. No change was noticed in the 1+4 
configuration. We even observe an 8% time gain in the 1+16 
configuration, which does not verify our initial hypothesis that 
encryption would diminish performance by 4-10%, as supported 

by professional presentations and literature. Using such figures, 
we can deduct that: 

• The encryption processing payload is also distributed 
across the nodes. 

• The more slave nodes are used, the less an important 
dataset is loaded in memory, and the faster encryption / 
decryption will occur. 

• We can suspect that encryption somehow forces the 
caching of the entire subset of data on each node, 
increasing the speed of processing. 

• The m3.xlarge EC2 instances use 2.6GHz Intel Xeon 
E5-2670 v2 which implement the AES-NI (new 
instructions set) 

• Each EC2 instance provides 15Gb of RAM and SSD 
drives which reportedly accelerate Hadoop processing 
by around 31% (Cloudera, 2015). 

Considering these hypotheses, we can observe that SSE’s 
impact on performance is not really quantifiable for a dataset of 
this size. In the table below, a negative performance impact 
means a gain of processing time after encryption is enabled. 

slave nodes # 1+2 1 + 4 1 + 8 1 + 16 1 + 19 

Encryption 
Performance 

Impact 

-3% 3% 0% -8% -6% 

Fig. 8. 4,7GB, S3 buckets (EMRFS), no encryption versus AES256 Server-
Side encryption 

4) HDFS, no encryption 
Since we used an S3 bucket for our initial dry run, we used 

it as a baseline to compare the course of events when testing 
other mechanisms, including the native HDFS which is provided 
with Hadoop. HDFS is notably not a great performer, but has 
proven to be extremely reliable in ensuring data consistency and 
integrity thanks to its replication mechanisms, and the integrity 
checks it performs continuously. Overall, HDFS still provides a 
valuable service, despite the complaints we could read about its 
overall performance. Furthermore, HDFS was until Hadoop 
v2.6.0 unable to provide any security function to data. Since, 
HDFS transparent encryption was introduced and HDFS is now 
able to play a role in the security of the information it contains. 

To start with, we have uploaded our dataset onto the Hadoop 
Master Node from an SSH shell, using the grunt shell’s cp 
command. For the 4,7GB dataset, the cp command took a little 
below 1min to complete. Once aboard, the dataset was ready to 
be processed; we used the same script as previously; we however 
launch each line of the script using the grunt shell. 

Performance metrics show that HDFS performs much better 
than S3 when only few slave nodes are used (up to 8). Above 8 
slave nodes, HDFS seems to provide no further advantage and 
tends to a lower processing time limit of 4min, instead of 3min 
for S3. 

slave nodes 
# 

1+2 1 + 4 1 + 8 1 + 16 1 + 19 

processing 
time (s) 

00:10:47 00:06:03 00:04:33 00:04:13 00:04:17 

Fig. 9. 4,7GB, HDFS data folder, no encryption 



5) HDFS, server-side encryption (SSE) AES256 
As shown in Fig. 3 (strategy #4), HDFS uses a native KMS 

(Key Management Server) to implement on-the-fly data 
encryption. We first implement an Encryption Zone (EZ), where 
HDFS forces each file to be encrypted [14]: 

• Files are encrypted/decrypted using DEKs (Data 
Encryption Keys). 

• DEKs are protected by being encrypted by the EZ key. 
The result is an EDEK. 

• Users / applications may request a file to be decrypted: 
the KMS will serve the request only if the user is 
authorised. 

As a result, users can be created, modified, deleted, and new 
users created; if one account is granted the right to access a file, 
it is actually granted a right to use an EDEK. This means that if 
a file is being transferred from a node to another, it will be under 
its encrypted form. Should SASL not be used between nodes, an 
MITM would fail to read the data itself. Such complexity 
worried us that performance impact could indeed be significant. 
The results however once again contradict the initial hypothesis. 

slave nodes 
# 

1 + 2 + 
AES256 
CTR 

1 + 4 + 
AES256 
CTR 

1 + 8 + 
AES256 
CTR 

1 + 16 + 
AES256 
CTR 

1 + 19 + 
AES256 
CTR 

processing 
time (s) 

00:10:27 00:06:12 00:04:36 00:04:36 00:04:11 

Fig. 10. 4,7GB, HDFS transparent encryption, Encrypted Zone dataE folder 

6) HDFS - no encryption versus AES256 
We can compare HDFS’s performance with transparent 

encryption versus without encryption. Except a notable 
performance impact (8%) using the 1+16 configuration, other 
figures tend to show rather stable figures, like when using S3. 

slave nodes # 1+2 1 + 4 1 + 8 1 + 16 1 + 19 

Performance 
Impact 

-3% 2% 1% 8% -2% 

Fig. 11. 4,7GB, HDFS, no encryption versus AES256 CTR transparent 
encryption 

B. Larger-size dataset processing (17GB, compressed) 
Previous experiments reveal that for “small” Big Data (i.e. 

5GB), encryption has a very limited impact on performance. In 
some cases, it even forces caching which sends the entire file 
encrypted to RAM, where decryption performance is really high. 
We therefore wanted to use a file which “doesn’t fit” in RAM, 
i.e. a 17GB, compressed text file, to increase the difficulty and 
observe whether encryption would be a strong challenge to the 
MapReduce processing performance. 

To achieve this goal, we a) restored a snapshot to an EBS 
attached volume, b) mounted the EBS volume to the EMR 
Master Node, c) copied the content to HDFS storage (normal 
zone, and encrypted zone) and finally d) launched the same 
series of processes than previously, with the same horizontal 
scaling. 

1) HDFS, no encryption 
The size increase, combined with the use of b2zip 

compressed dataset is supposed to impact performance in an 
extremely heavy fashion, and allow us to make the part of 

encryption in the overall processing payload. The initial run 
shows indeed that for the size increase, the processing time 
increase is significant: in a 1+2 configuration, the 17GB 
compressed takes around 920% more time to process than the 
5GB uncompressed. A 1+4 configuration (actually doubling the 
computing power) shows a halved processing time compared to 
1+2, and 1+8 seems to tend already to the limit; 1+16 and 1+19 
both take around 20min to complete the work. 

slave nodes # 1 + 8 1 + 16 1 + 19 

elapsed processing 
time (s) 

00:28:09 00:25:29 00:25:19 

Fig. 12. 17GB b2zipped, HDFS, no encryption 

2) HDFS, transparent encryption (AES256 CTR) 
The same tests using transparent encryption, i.e. loading the 

data in the EZ (encryption zone) which forces the processing to 
start after decryption has occurred and before encryption occurs 
again. We saw previously that encryption had little impact on 
performance on a dataset smaller than the amount of RAM 
available; with this compressed dataset, 17GB could mean that 
the overall size (uncompressed) would reach around 50GB 
(since bzip2 has a compression rate of 2,92. In all cases, the total 
data size is higher than the RAM on each EC2 instance, which 
may require optimisation and which explains the very poor 
performance figures in 1+2 and 1+4 configurations. 

Unfortunately, we could not manage to complete the 
processing of the encrypted dataset in the 1+2 and 1+4 
configurations: processing typically froze straight after 16% 
completion at each attempt. 

slave nodes # 1 + 8 + AES256 
CTR 

1 + 16 + 
AES256 CTR 

1 + 19 + 
AES256 CTR 

elapsed 
processing 

time (s) 

00:27:39 00:20:43 00:19:53 

Fig. 13. 17GB b2zipped, HDFS, AES CTR 

3) HDFS - no encryption versus AES256 CTR 
On 1+8 and above setups, we can observe that encryption 

actually benefits the processing time by significant means: 23% 
gain in a 1+16 configuration, 27% gain in a 1+19 configuration. 

slave nodes # 1 + 8 1 + 16 1 + 19 

Performance 
Impact 

-2% -23% -27% 

Fig. 14. 17GB b2zipped, HDFS, AES CTR 

V. ANALYSIS 

A. Impact of slave nodes amount on CPU usage 
A deeper analysis reveals a number of characteristics of the 

multiplication of nodes on processing time and on resources 
overall. For instance, CPU usage in a 1+2 configuration is not 
optimal: one node remains at 100% while the other stops being 
used at around half of the processing. 

B. Impact of slave nodes amount on Disk usage 
Overall, we can observe indeed a change of IO behaviour 

when the amount of nodes changes:  



• 1+2 configuration requires more frequent IO reads / 
writes, which can be explained by the limited amount of 
RAM available in this setup. Caching of smaller data 
parts, more frequent is therefore necessary. 

• 1+4 configuration shows indeed less frequent IO 
operations. Their amount is however similar, and peak 
at a similar level as the 1+2 configuration. 

C. Impact of slave nodes amount on Network usage 
The 1+4 setup is more network intensive than the 1+2: most 

of the processing organisation seems to require access to data 
which is not located physically on a disk attached to the node 
where it is supposed to be processed. Instead of intense Disk IO 
in the 1+2 configuration, we therefore observe intense network 
IO in the 1+4 configuration. With higher amount of nodes in the 
cluster, we can observe an initial load on the network –most 
likely due to HDFS replication– which becomes less and less 
noticeable. Possibly this effect could be further attenuated if 
HDFS replication occurs in a more thorough manner. 

D. Impact of encryption: the 1+19 case 
The 1+19 configuration is in our opinion the most interesting 

to analyse since it shows wholly how CPUs, Memory, and Disk 
IOs are effectively affected by the enabling of AES256 CTR.  

1) Observation 1 
When encryption is enabled, far more nodes reach 100% 

CPU usage over a part, or the entire period of processing. 
Without encryption, several nodes just end processing much 
before others. Encryption shows therefore a significant impact 
on CPU usage, which suggests that larger datasets processing 
may require either smart processing approaches (using data parts 
during decryption phases), or a horizontal upgrade of the cluster 
(i.e. more active nodes). 

2) Observation 2 
Our second observation relates to Network and Disk IO: we 

can see in both cases Read or Write spikes: we deduct that these 
are the moments where large parts of the data are transferred to 
RAM, and later when results are written back to HDFS. HDFS 
in such case could mean either a Disk Write and/or a Network 
Write, depending on which node is the data (source, and output) 
needs to be located, and whether it is replicated. 

 
Fig. 15. Network Out (Bytes) behavior during 1+19 AES CTR processing (job 

start: 20h10) 

Encryption is hardly noticeable on the measurements 
obtained (see Fig. 15). 

• Disk reads spikes at 20.000.000 Bytes per 5min 
(exception made of the spike at around 82.000.000 
Bytes per 5min on one node, probably due to data 
replication) 

• Disk writes stagnate at around a median value of 
150.000.000 Bytes, with spikes at 400.000.000 - 
600.000.000 Bytes per 5min at the end of the processing 
(typically when results are written from RAM to 
persistent storage). 

• Both Network reads and writes behaviour also seem 
unchanged by the use of encryption, and spike at around 
100.000.000 - 120.000.000 Bytes per 5min. 

If we then rule out the impact on nodes IOs, we are solely 
left with a noticeable impact on the nodes’ use of CPU time, 
which confirms the literature description of how transparent 
encryption operates. Ultimately, multiplying the amount of 
nodes will help getting each data part fully loaded, decrypted, 
processed, and encrypted in RAM.  

3) Observation 3 
The first test using HDFS show a significant performance 

gain compared to the use of S3 buckets, around 3min gain in the 
1+2 configuration. One possible explanation lies in the fact that 
the “HDFS volume” is “attached” to the EC2 instances, and 
directly accessible without having to suffer from network 
latency. 

4) Observation 4 
The performance on smaller datasets is not affected at all by 

encryption, in practice. This could be explained by the fact that 
encryption and decryption happens fully in RAM. This indeed 
implies that higher performance can be reached by adding more 
RAM to the cluster. During our experiment, the total amount of 
RAM at our disposal exceeded 218GB on the 1+19 nodes setup, 
which is much higher that the amount of data we wanted to 
process. 

5) Observation 5 
Encryption very seldom impacts the file size, which means 

that there is potentially no data overhead, and therefore no (or 
minimal) impact on Disks IO. Impact on network performance 
(set aside the use of RPC SASL) is also minimal for the very 
same reasons, and should remain similar to the performance 
levels of configurations without encryption used. 

6) Observation 6 
We can observe that the CPU resource is the most impacted 

by encryption, compared to other components. This verifies and 
supports the strategy of developing crypto-instructions within 
the CPU core. The impact of encryption (AES CTR) on newer 
CPUs could however remain significant, and CPU is the 
bottleneck to encryption, especially when random data searches 
are performed on the Big Data repository. 

VI. CONCLUSIONS AND FURTHER RESEARCH 
Encryption and decryption of course still represent a cost and 

impact performance; as popular belief rightly mentions, we 
observe a significant level of overhead due to encryption; it is 



however mitigated by hardware configuration, server software, 
ratio of dynamic versus static content, client distance to server, 
typical session length, and the caching strategy used both at 
server level or client level [15]. Real-life measurements gains 
presented in this research reveal that encryption forces the 
caching of larger sets of data; such decryption and encryption of 
larger datasets actually improve artificially the overall job 
performance. They also confirm that specific encryption modes 
(i.e. CTR encryption or decryption in forward mode) can indeed 
be performed in parallel [16]. Like any other processing payload, 
encryption is therefore massively distributed among nodes 
during processing. 

In our tests, we have considered exclusively a linear-type 
(e.g. sequential) data processing. It occurs without “noticeable” 
performance impact, due to smart caching strategies and CPU-
based encryption instructions sets. Random data access (e.g. 
using Hive) could however present a more significant challenge 
to performance. Future research should therefore focus on 
developing homomorphic encryption. It would greatly support 
the use of encrypted indexes, and limit the need for storing in 
RAM the data in the clear, leaving it potentially vulnerable to 
remote execution attacks. 

Performance is however not the only potential impact of 
encryption: Key loss and Recovery / Proof of Retrievability 
(PoR) is a new control that needs to be considered as encryption 
at rest (or transparent encryption) is implemented at all. A crash 
of one KMS and the incapability of recovering encryption keys 
could be a disaster that leads to the loss of significant amounts 
of data. Likewise, keys theft remains a plausible attack scenario, 
and the protection of the KMS is of paramount importance, as 
well as the assurance of its high availability. This component 
could well be a more significant bottleneck than all the others. 

Enabling encryption also requires that Centralised 
Authorisation is implemented together with Single Sign-on 
across all components: currently, authorisations mechanisms are 
per-component and unable for some to interact at all. There are 
therefore several authorisation steps required to access a single 
dataset.  

Likewise, logging requires to be implemented consistently in 
all Hadoop components, and it requires to be protected 
adequately. The encryption of the logs produced by the various 
components (Hadoop core, HDFS) wasn’t considered during 
this research. Many other Hadoop components also require 
protection and solutions are being researched (Hadoop core, 
HDFS, MapReduce, ZooKeeper, HBase, Hive, PIG, Oozie, 
Mahout, Flume, Sqoop) in Intel’s driven ‘Project Rhino’ 
(GitHub, 2015). 

Encryption no longer looks like an obstacle to performance 
and system usability. While precautions should always be taken 
(Key server high availability, Proof of Recovery), encryption 
can be seriously considered in any Big Data project.  

We recommend that encryption zones (EZs) are made 
available by default in all HDFS distributions and that EZs are 
the default path used when uploading data. Where data needs to 
be randomly accessed, or where measured performance shows 
significant slowdown, one could choose to use the “unsecured” 
HDFS container instead. 
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